Verification Challenges & Solutions of 10BaseT1s Automotive Ethernet PHY

Harshdeep Verma, Vedansh Seth
Cadence Design Systems
Agenda

• Motivation
• What is 10BaseT1S
• Introduction to PLCA Multidrop
• Applications
• Need for Time Synchronization in Automotive Ethernet
• Time Synchronization using PTP
• Time Synchronization Challenges with Multidrop
• Verification Challenges of PLCA
• Conclusion
Motivation

• Currently automotive industry uses bunch of different networks in vehicles such as LIN, Flex-Ray, CAN-FD etc.

• 10BaseT1S can replace these legacy networks as it eliminates the need of gateways and cables used to bridge different network types.

• It is very cost effective and can be easily integrated into an existing ethernet architecture within vehicles.
What is 10BaseT1S Automotive Ethernet

• 10BaseT1s is a 10Mbps short reach Ethernet PHY that uses single twisted pair cables for data transmission.
• It operates in full-duplex point-to-point mode and half-duplex multidrop mode.
• Multidrop mode is a bus topology in which at least 8 nodes can be connected on a bus segment.
• 10BaseT1s uses PLCA (Physical Layer Collision Avoidance) Reconciliation sub-layer to avoid collisions on the network.
Introduction to PLCA

• In PLCA, each node is assigned a unique node-Id.
• Node with ID=0 is the Master node.
• The arbitration process starts when Master node sends a special synchronization signal called BEACON.
• Each node is given a transmit opportunity in round-robin fashion.
• Only the node having transmit opportunity is allowed to send data.
• A node yields it transmit opportunity if it doesn’t have packet to transmit.
10BaseT1S Applications

• In Car as Radar and Ultrasonic sensors.
• In Car door speakers.
• In front/back-light and indicators of Car.
• In elevators as sensor network.
Need for Time Synchronization in Automotive Ethernet Network

• For real time data communication within vehicles.
• For minimal and deterministic latency of data packets for critical operations.
• For safety and reliability of automotive systems.
• For synchronized operation of ECUs and subsystems.
Time Synchronization using PTP

- PTP is used to synchronize clocks in a network with high accuracy.
- Works on Master-Slave hierarchy.
- Synchronization is achieved through exchange of messages having timestamp information.
- Sync/Follow-Up messages are used to synchronize nodes.
- Pdelay messages are used to calculate propagation delay between nodes.

\[\text{Prop. Delay} = (t4 - t1) - (t3 - t2) / 2 \]
Running PTP on Multidrop

• Challenges of running PTP on multidrop mode?
 • When Pdelay message is used in multidrop mode, each node will receive a PdelayReq message from the requestor node.
 • Moreover, the node that requested PdelayReq message will receive PdelayResp messages from each node.
 • The requesting node will be confused and will not be able to distinguish between the response from intended node and rest of the nodes.
 • A solution to this problem can be to use unicast Mac addressing instead of multicast addressing.
Running PTP on Multidrop Cont.

- PLCA algorithm introduces variable delay on the transmit path.
- Collision can cause unexpected delays.
- PTP operation is defined only for point-to-point links.
- 10BaseT1s is the first half duplex ethernet PHY.
- PTP standard should be enhanced to work with half-duplex ethernet networks.
Latency Variation in Multidrop Mode

• Challenges of variable latency in multidrop mode?
 • Multidrop mode can introduce variable latency which can impact time synchronization.
 • Min latency per node = 32 bit-times (TO timer) ~ 3.2us
 • Max latency per node = node transmitting a 1524-byte packet = 1.2176ms ~ 1ms.

• Latency variation for 8 node network
 • Min Latency assuming 1 node transmitting 1524 bytes and 7 nodes idle = (1*1ms) + (7*3.2us) ~ 1ms
 • Max Latency assuming 8 nodes transmitting 1524-bytes packet = 8*1ms ~ 8ms

• Latency can be reduced by limiting the packet size.
Verification Topology for Multidrop Mode

• Challenges in determining verification topology for multidrop mode?

• Two topologies can be possible while verifying multi-node PHYs:

 • Using a single Instance incorporating multiple nodes.
 • Reduces the pin connections of multiple nodes in testbench.
 • Highly scalable as the number of nodes can be increased/decreased using some configuration.
 • Makes verification environment simple and easy to use.

Single Agent Topology
Verification Topology for Multidrop Cont.

- Using multiple instances where each instance represents a single node.
 - Overhead of pin connection of multiple nodes in testbench.
 - Not very scalable topology.
 - Makes verification environment complex as number of nodes increases.

Multiple Agent Topology
Collisions in PLCA Multidrop

• Challenges associated with collision in PLCA?

• Logical Collision
 • Occurs when two or more nodes try to transmit data simultaneously, but the arbitration mechanism forces the MAC to hold a frame while waiting for a transmit opportunity.
 • Does not cause data corruption.
 • Can be tested by scheduling packets from multiple nodes at the same time.

• Physical Collision
 • Occurs when two or more nodes transmit data at the same time, resulting in collision at the physical lines.
 • Causes data corruption.
 • PLCA is designed to avoid physical collision.
Negative Testing of PLCA Multidrop

• Challenges associated with negative testing of PLCA?
 • Numerous negative scenarios are possible in PLCA.
 • Negative testing is necessary to ensure complete verification.
 • Negative testing can be done by error injection on callbacks.
 • Callback at different layers of Ethernet PHY stack provides flexibility to modify data at each layer and create various error injection scenarios.
Score-boarding Packets in Multidrop Mode

• How to scoreboard packets in multi-node environment?
 • In PLCA, packet transmitted by a node is received by all other nodes.
 • Thus, score-boarding becomes different in this case.
 • The transmitted packet becomes the expected packet for scoreboard.
 • When this packet is received by all other nodes, it is sent to the scoreboard for comparison.
 • The Scoreboard compares the expected packet with received packet from each node to ensure all nodes have received the packet correctly.
Conclusion

• 10BaseT1S is the future of Automotive, hence, its verification becomes crucial.
• Positive as well as negative scenarios need to be tested to ensure complete verification.
• In Multidrop, complexity increases as the number of nodes increases.
• Debugging such environments may be extremely challenging and time consuming.
• IEEE is coming-up with 802.3dg standard to overcome various challenges related to time synchronization in multidrop mode.
Questions