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Introduction

• Common Issues Across Testbenches
• How to end test cleanly?

• How to handle a fatal case?

• Where to disable all stimulus?

• When to enable the stimulus in a particular scenario?

• Reusable Methodology Using UVM Run Time Phases
• Addresses synchronization issues between various components
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Issue 1: Thread Synchronization

• Multiple reset threads triggered by fatal event

• Can mess with execution of subsequent events

• The regression is barely achievable. 

• Complex activities in reset phase

• Warm reset, cold reset, s3 (Ultra Low Power State, 
Deep sleep, Stutter Mode… etc) 

• Must catch fatal error during execution

• Must trigger reset event repeatedly

• Potential issue with threads

• Multiple reset threads running

• Messing up order of execution
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Traditional Implementation

Issue 2: End of Simulation
• End of simulation in UVM testbenches requires disabling all stimulus

• Communication among multiple components introduces race conditions

• Dependencies between components can result in race conditions

• Issue exacerbates in System-on-Chip (SOC) with numerous interdependent components

• Scalable UVM architecture needed for comprehensive solution

• Architectural changes ensure visibility of state and termination process

• Effective management of dependencies and prevention of race conditions
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Issue 3: Reusability
• Run Phase Encapsulates Majority of Logic

• Modifying or altering presents considerable challenge

• Dealing with Legacy Code

• Large and intricate, adds extra layer of difficulty

• Transitioning to New Architectures

• Minimize alterations to maintain robustness

• Prevent introduction of new issues

• Transparent Transition for Customer

• Seamless integration of delivered IP for different SOC

• No unexpected changes or complications

• Target: 

• Merge all codes from different component of TB into one unified place. 
• The test end event spread among sequence, test_base, monitor before. 
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Solution
• UVM supports multiple subphases within the run phase

• Granular control helps manage interdependencies between components, 
resolve issue2, end of simulation. 

• Automatically terminates threads initiated by a subphase while 
transitioning to another phase

• Avoids race conditions of issue1, thread synchronization. 

• UVM subphases facilitate the modulation of reset behavior

• Comprehensive rewrite of reset resolve issue3, reusability 

• Novel methodology introduced

• Manipulate subphases of run_phase through API-centric approach to 
surgically control the very phase jump behavior of reset. 

• Allows for reuse of majority of existing code by tweaking the reset function 
apart from main logic in main_phase. 

• Streamlines integration of UVM subphases into existing TB by modifying 
only the TEST without UVM Component rework. 
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Sub Phase Implementation

• All activities corresponding to one phase are implemented under one sub 
phase instead of multiple places across the TB. 

• All similar activities can implement Macro based approach which increases 
reusability and reduces clutter. 

• Scoreboard is presented by checker/assertion after sequence completion 
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Implementation1: Runtime Phase Header Macro

• Reduces code repetition and enhances robustness

• Waits for event trigger and forks associated task

• Incorporates global event to suspend ongoing tasks

• Accommodates multiple parallel phase jump calls 
(Next 2 pages)

• Offers flexibility for global TB control

• Prevents corner cases from improper user 
interactions

• Takes in 5 inputs

• SUBPHASE_NAME, TASK_NAME, EVENT_NAME, 
and two PARAMETERS

• Standardization ensures predictable, smooth, and 
controlled task execution

• Next case managed by different event 
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`define subphase_header(SUBPHASE_NAME, TASK_NAME, EVENT_NAME, PARA1, PARA2) \
begin \

uvm_event_pool::get_global_pool().get("``EVENT_NAME").wait_on(); \
phase.raise_objection(this, "test_base ``SUBPHASE_NAME" raised an objection", 1); \
fork \ 

begin \
fork \

``TASK_NAME``(``PARA1``, ``PARA2``); \ //Execute the activity 
@``SUBPHASE_NAME_end; \ //Kill the activity by the Hook

join_any 
disable fork;

end 
join
phase.drop_objection(this, "uvm_test_base dropped object on reset_phase", 1); \
uvm_event_pool::get_global_pool("``EVENT_NAME".reset(); \

end 



Implementation2: Coordination of All Reset Sources 

• Reset phase implemented as a sub phase in 
run using sub_phase user API and sub_phase 
header

• Three threads execute tasks using 
subphase_header macro

• Fourth thread waits on global event to kill reset 
phase

• Reset_phase_end event kills threads 1, 2, 3

• phase_jump API triggers corresponding activity 
and enters reset phase in run phase (next 
page)

• Revisions implemented at test level

• API invoked in main sequence of TB

• Subphases not advised at Agent/Env level

• May result in incompatibility with upstream 
SOC infrastructure
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task reset_phase(uvm_phase phase);
event reset_phase_end;
phase.raise_objection(this, "test_base, reset_phase rasied on objection", 1);
fork 

begin // Thread 1: cold_reset_event
`subphase_header(reset_phase, do_cold_reset_all, exec_cold_reset_event,);

end
begin // Thread 2: warm_reset_event

`subphase_header(reset_phase, do_warm_reset_all, exec_warm_reset_event,);
end
begin // Thread 3: s3_event

`subphase_header(reset_phase, do_s3_all, exec_s3_event,);
end
begin // Thread 4: Check fatal error happen during reset_phase 

uvm_event_pool::get_global_pool().get("disable_main_thread").wait_on(); 
// wait for global kill 
->reset_phase_end; //Trigger reset_phase_end. This will kill Thread 1, 2, 3. 

end
join_any
phase.drop_objection(this, "test_base, reset_phase dropped object on reset_phase", 1);
`uvm_info(get_report_id("test_base_reset_phase"), $sformatf("Finish reset_phase"),);

endtask: reset_phase 



Implementation3: Phase Jump API
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task phase_jump(string phase_name, uvm_event event_trigger_list[$]);
uvm_phase m_target_phase;
uvm_event trigger_event_list[$]; 
// (Info) Start jump to -> phase_name
if ( (phase_name != "reset") & (phase_name != "configure") 

& (phase_name != "shutdown")) 
// (Error) Can't recognize the subphase

while (current_phase.get_name=="start_of_simulation" 
| current_phase.get_name=="run" 
| current_phase.get_name=="pre_reset" ) begin
// (Info) Waiting to main_phase
#1ps;

end
m_target_phase=current_phase.find_by_name(phase_name);
case (phase_name)

"reset" : begin
foreach (event_trigger_list[i]) begin

trigger_event_list.push_back(event_trigger_list[i]);
end

end
"configure" : begin 

foreach (event_trigger_list[i]) begin
trigger_event_list.push_back(event_trigger_list[i]);

end                       
end

"shutdown" : begin
foreach (event_trigger_list[i]) begin

trigger_event_list.push_back(event_trigger_list[i]);
end                       

end       
endcase

if (m_target_phase==null)     // (Error) fail to find the target phase
else // (Info) start did find the target phase
if (m_target_phase.is(current_phase)) begin // trigger event & let it  happens

foreach(trigger_event_list[i]) begin
trigger_event_list[i].trigger;

end
end 
else if (m_target_phase.is_before(current_phase)) begin 

// need to jump, just allow jump from main phase to others as for now
while (current_phase.is(current_phase.find_by_name("main"))==0)

@(current_phase);
foreach(trigger_event_list[i])

trigger_event_list[i].trigger;
current_phase.jump(m_target_phase);

end 
else if (m_target_phase.is_after(current_phase)) begin 

// only when target phase is shutdown phase, need to jump
if ((current_phase.is(current_phase.find_by_name("reset"))==1) 

&& (phase_name == "shutdown")) begin
while (current_phase.is(current_phase.find_by_name("main"))==0)

@(current_phase);
end
foreach(trigger_event_list[i]) 

trigger_event_list[i].trigger;
if (phase_name == "shutdown")

current_phase.jump(m_target_phase);
end
m_target_phase.wait_for_state(UVM_PHASE_READY_TO_END); // Hook
trigger_event_list.delete();

endtask : phase_jump



Conclusions
• UVM run-time phases offer efficient solution to synchronization challenges

• Enhances control over simulation flows

• Resolve potential race conditions

• Requires minimal modifications to existing TB

• Contributions
• Methodology applied to TB used by over 60 individuals

• Achieved by single resource within 3 months

• Did not disrupt existing project timeline

• Strategies can be adapted to various TB structures
• Ensures robust and adaptable TB architecture

• Provides efficient, flexible, and resource-effective solution
• Improves UVM TB synchronization and manageability
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Q&A

• Thanks for your participation! 
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