
Improving UVM test benches
using UVM Run time phases

Karthik Palepu
Lingkai Shi

Prosper Chen

Agenda

• Introduction
• Common Issues

• Solution

• Run time Phase Header Macro

• Coordination of all reset sources

• Phase Jump API

• Conclusions

• References

• Appendix

2024/9/10 2

Introduction

• Common Issues Across Testbenches
• How to end test cleanly?

• How to handle a fatal case?

• Where to disable all stimulus?

• When to enable the stimulus in a particular scenario?

• Reusable Methodology Using UVM Run Time Phases
• Addresses synchronization issues between various components

2024/9/10 3

Issue 1: Thread Synchronization

• Multiple reset threads triggered by fatal event

• Can mess with execution of subsequent events

• The regression is barely achievable.

• Complex activities in reset phase

• Warm reset, cold reset, s3 (Ultra Low Power State,
Deep sleep, Stutter Mode… etc)

• Must catch fatal error during execution

• Must trigger reset event repeatedly

• Potential issue with threads

• Multiple reset threads running

• Messing up order of execution

2024/9/10 4

Traditional Implementation

Issue 2: End of Simulation
• End of simulation in UVM testbenches requires disabling all stimulus

• Communication among multiple components introduces race conditions

• Dependencies between components can result in race conditions

• Issue exacerbates in System-on-Chip (SOC) with numerous interdependent components

• Scalable UVM architecture needed for comprehensive solution

• Architectural changes ensure visibility of state and termination process

• Effective management of dependencies and prevention of race conditions

2024/9/10 5

Complex Monitor generate highly dependent & overlapping
& concurrent threads

Thread

Exit

Thread

Tedious Event
Coordinator

ThreadThread

Ideal (Sub Phase) Implementation

Virtual Sequencer handle phase jump
trigger by sequence monitor Sequences

Sub Phase manage “Threads”
Synchronization automatically as

primary enhancement

UVCs

Sequences

Issue 3: Reusability
• Run Phase Encapsulates Majority of Logic

• Modifying or altering presents considerable challenge

• Dealing with Legacy Code

• Large and intricate, adds extra layer of difficulty

• Transitioning to New Architectures

• Minimize alterations to maintain robustness

• Prevent introduction of new issues

• Transparent Transition for Customer

• Seamless integration of delivered IP for different SOC

• No unexpected changes or complications

• Target:

• Merge all codes from different component of TB into one unified place.
• The test end event spread among sequence, test_base, monitor before.

2024/9/10 6

Solution
• UVM supports multiple subphases within the run phase

• Granular control helps manage interdependencies between components,
resolve issue2, end of simulation.

• Automatically terminates threads initiated by a subphase while
transitioning to another phase

• Avoids race conditions of issue1, thread synchronization.

• UVM subphases facilitate the modulation of reset behavior

• Comprehensive rewrite of reset resolve issue3, reusability

• Novel methodology introduced

• Manipulate subphases of run_phase through API-centric approach to
surgically control the very phase jump behavior of reset.

• Allows for reuse of majority of existing code by tweaking the reset function
apart from main logic in main_phase.

• Streamlines integration of UVM subphases into existing TB by modifying
only the TEST without UVM Component rework.

2024/9/10 7

Sub Phase Implementation

• All activities corresponding to one phase are implemented under one sub
phase instead of multiple places across the TB.

• All similar activities can implement Macro based approach which increases
reusability and reduces clutter.

• Scoreboard is presented by checker/assertion after sequence completion

2024/9/10

8

rst cfg main shut

rst cfg main shut
If successful
complete, go next

If reaching the last pattern

rst cfg main shut

rst cfg main shutIf normal error, jump to shutdown
phase, still go to the next one.
If fetal error triggered during
shutdown, test just end since
intention has done in main phase.

Same decision run continuously
as typical regression

Sub Phase Implementation

Virtual Sequencer handle phase jump
trigger by sequence monitor Sequences

Sub Phase manage “Threads”
Synchronization automatically as

primary enhancement

Safe Exit

Implementation1: Runtime Phase Header Macro

• Reduces code repetition and enhances robustness

• Waits for event trigger and forks associated task

• Incorporates global event to suspend ongoing tasks

• Accommodates multiple parallel phase jump calls
(Next 2 pages)

• Offers flexibility for global TB control

• Prevents corner cases from improper user
interactions

• Takes in 5 inputs

• SUBPHASE_NAME, TASK_NAME, EVENT_NAME,
and two PARAMETERS

• Standardization ensures predictable, smooth, and
controlled task execution

• Next case managed by different event

2024/9/10 9

`define subphase_header(SUBPHASE_NAME, TASK_NAME, EVENT_NAME, PARA1, PARA2) \
begin \

uvm_event_pool::get_global_pool().get("``EVENT_NAME").wait_on(); \
phase.raise_objection(this, "test_base ``SUBPHASE_NAME" raised an objection", 1); \
fork \

begin \
fork \

``TASK_NAME``(``PARA1``, ``PARA2``); \ //Execute the activity
@``SUBPHASE_NAME_end; \ //Kill the activity by the Hook

join_any
disable fork;

end
join
phase.drop_objection(this, "uvm_test_base dropped object on reset_phase", 1); \
uvm_event_pool::get_global_pool("``EVENT_NAME".reset(); \

end

Implementation2: Coordination of All Reset Sources

• Reset phase implemented as a sub phase in
run using sub_phase user API and sub_phase
header

• Three threads execute tasks using
subphase_header macro

• Fourth thread waits on global event to kill reset
phase

• Reset_phase_end event kills threads 1, 2, 3

• phase_jump API triggers corresponding activity
and enters reset phase in run phase (next
page)

• Revisions implemented at test level

• API invoked in main sequence of TB

• Subphases not advised at Agent/Env level

• May result in incompatibility with upstream
SOC infrastructure

2024/9/10 10

task reset_phase(uvm_phase phase);
event reset_phase_end;
phase.raise_objection(this, "test_base, reset_phase rasied on objection", 1);
fork

begin // Thread 1: cold_reset_event
`subphase_header(reset_phase, do_cold_reset_all, exec_cold_reset_event,);

end
begin // Thread 2: warm_reset_event

`subphase_header(reset_phase, do_warm_reset_all, exec_warm_reset_event,);
end
begin // Thread 3: s3_event

`subphase_header(reset_phase, do_s3_all, exec_s3_event,);
end
begin // Thread 4: Check fatal error happen during reset_phase

uvm_event_pool::get_global_pool().get("disable_main_thread").wait_on();
// wait for global kill
->reset_phase_end; //Trigger reset_phase_end. This will kill Thread 1, 2, 3.

end
join_any
phase.drop_objection(this, "test_base, reset_phase dropped object on reset_phase", 1);
`uvm_info(get_report_id("test_base_reset_phase"), $sformatf("Finish reset_phase"),);

endtask: reset_phase

Implementation3: Phase Jump API

2024/9/10 11

task phase_jump(string phase_name, uvm_event event_trigger_list[$]);
uvm_phase m_target_phase;
uvm_event trigger_event_list[$];
// (Info) Start jump to -> phase_name
if ((phase_name != "reset") & (phase_name != "configure")

& (phase_name != "shutdown"))
// (Error) Can't recognize the subphase

while (current_phase.get_name=="start_of_simulation"
| current_phase.get_name=="run"
| current_phase.get_name=="pre_reset") begin
// (Info) Waiting to main_phase
#1ps;

end
m_target_phase=current_phase.find_by_name(phase_name);
case (phase_name)

"reset" : begin
foreach (event_trigger_list[i]) begin

trigger_event_list.push_back(event_trigger_list[i]);
end

end
"configure" : begin

foreach (event_trigger_list[i]) begin
trigger_event_list.push_back(event_trigger_list[i]);

end
end

"shutdown" : begin
foreach (event_trigger_list[i]) begin

trigger_event_list.push_back(event_trigger_list[i]);
end

end
endcase

if (m_target_phase==null) // (Error) fail to find the target phase
else // (Info) start did find the target phase
if (m_target_phase.is(current_phase)) begin // trigger event & let it happens

foreach(trigger_event_list[i]) begin
trigger_event_list[i].trigger;

end
end
else if (m_target_phase.is_before(current_phase)) begin

// need to jump, just allow jump from main phase to others as for now
while (current_phase.is(current_phase.find_by_name("main"))==0)

@(current_phase);
foreach(trigger_event_list[i])

trigger_event_list[i].trigger;
current_phase.jump(m_target_phase);

end
else if (m_target_phase.is_after(current_phase)) begin

// only when target phase is shutdown phase, need to jump
if ((current_phase.is(current_phase.find_by_name("reset"))==1)

&& (phase_name == "shutdown")) begin
while (current_phase.is(current_phase.find_by_name("main"))==0)

@(current_phase);
end
foreach(trigger_event_list[i])

trigger_event_list[i].trigger;
if (phase_name == "shutdown")

current_phase.jump(m_target_phase);
end
m_target_phase.wait_for_state(UVM_PHASE_READY_TO_END); // Hook
trigger_event_list.delete();

endtask : phase_jump

Conclusions
• UVM run-time phases offer efficient solution to synchronization challenges

• Enhances control over simulation flows

• Resolve potential race conditions

• Requires minimal modifications to existing TB

• Contributions
• Methodology applied to TB used by over 60 individuals

• Achieved by single resource within 3 months

• Did not disrupt existing project timeline

• Strategies can be adapted to various TB structures
• Ensures robust and adaptable TB architecture

• Provides efficient, flexible, and resource-effective solution
• Improves UVM TB synchronization and manageability

2024/9/10 12

Q&A

• Thanks for your participation!

2024/9/10 13

References

• Authors: Brian Hunter, Ben Chen and Rebecca Lipon
• Published in the Proceedings of SNUG SV

2024/9/10 14

	Slide 1
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Issue 1: Thread Synchronization
	Slide 5: Issue 2: End of Simulation
	Slide 6: Issue 3: Reusability
	Slide 7: Solution
	Slide 8: Sub Phase Implementation
	Slide 9: Implementation1: Runtime Phase Header Macro
	Slide 10: Implementation2: Coordination of All Reset Sources
	Slide 11: Implementation3: Phase Jump API
	Slide 12: Conclusions
	Slide 13: Q&A
	Slide 14: References

