
Adopts ISA-Formal On High-End
Out-Of-Order Execute RISC-V Cores

HUANG YU-TSE, WU SHENG-JHAN, HSIAO YUNG-CHING

Agenda

2024/9/10 2

Introduction

Pipeline Follower

Golden Instruction model

Formal properties

Conclusion

What’s an ISA-Formal?
• ISA-Formal

• An end-to-end framework to verify the core conform to the Instruction-
Set Architecture (ISA) spec.

• bounded model checking (BMC) to explore different sequences of
instructions.

• Pros and Cons

 Pros Cons
• Single Instruction

• Error in decode

• Error in data path

• Multiple Instruction
• Errors in forwarding logic

• Errors in register renaming and OoO execution

• Errors in exception trigger

2024/9/10 3

• FP computation

• Mul/Div operation

• Vector operation

• Crypto operation

ISA view

• In the ISA view, instructions are seen in a very straightforward
manner

• Instruction is considered a state transformation function.

• Each instruction contains an execution body.
• E.g. ADDI x2, x1, 10

2024/9/10 4

State0 State1 State2 …… Staten+1

Instr0 Instr1 Instr2 Instrn

State0 State1

ADDI x2,x1, 10

State1.x2 = State0. x1+10

ISA-Formal Key Component

• Golden instruction Model
• Calculate the expected result.

• Must be synthesizable.

• Pipeline follower
• Collect necessary CPU information for building architectural state.

• Determine when to activate Instruction model and check.

• Formal Properties
• Assertion properties to verify the instruction result correctness.

• E.g. when an addi instruction retired implies GPRs of DUT should be same to
GPRs of architectural state.

• Constraint properties to remove unsolvable scenarios in ISA-Formal.
• E.g. asynchronous interrupts.

2024/9/10 5

ISA-Formal Overview

2024/9/10 6

 ISA-Formal Framework

DUT
(CPU RTL)

Staten
(pre state))

Instruction

Pipeline Follower

Instruction
Model

Staten+1

(post state)

Staten+1

(arch state)

Formal
Properties

ISAF checker

Structure of CPU state

• General purpose registers(GPRs)

• Floating point registers

• Vector registers

• Control and status registers(CSRs)

• Privilege

• Virtual mode

• Trap

2024/9/10 7

Pipeline-Follower

What do we need for
verifying ISA
architecture?

• Instruction opcode

• State before the instruction
execution(pre_state)

• State after the instruction
execution by DUT(post_state)

2024/9/10 8

StatenStaten+1

By Alastair Reid

OoO CPU state abstraction
• Decode and Register rename stage

• Collect instruction operand information
• Rd, Rs1, Rs2, Immediate value

• Map the logic register to physical register.
• Mark Instruction with instruction id.

• Formal Reorder Buffer (FROB)
• Ensure the instruction committed in order.
• Observe issued instruction status.

• Instruction age

• completed

• committed

• Trap

• Physical register index

2024/9/10 9

ROB field Note

age Instruction Age

pc PC counter

ird

Logical register Indexirs1

Irs2

Prd

Physical register Index.Prs2

prs2

ROB field Note

completed Instruction complete

commited Instruction committed

OoO Pipeline-Follower

2024/9/10

E1 E2 E3

Main / ALU pipeine

Float Point Pipeline

fast

P
R
F

WB

LD/ST LD/ST LD/ST

Load/Store pipeine
fast

WB

PIPE-SFP1 (FMAC/FDIV/FMIS)

Fetch

Decode

(rename)

Issue

(allocate

to FROB)

E1 E2
fast

WB

ALU pipeine

E1 E2 E3
fast

WB

In the Decode stage, we

observe the instruction opcode

and track the physical register

index used for real operation.

We need to know how to update

the logical register with the

correct physical register value.

10

OoO Pipeline-Follower

2024/9/10

E1 E2 E3

Main / ALU pipeine

Float Point Pipeline

fast

P
R
F

WB

LD/ST LD/ST LD/ST

Load/Store pipeine
fast

WB

PIPE-SFP1 (FMAC/FDIV/FMIS)

Fetch

Decode

(rename)

Issue

(allocate

to FROB)

E1 E2
fast

WB

ALU pipeine

E1 E2 E3
fast

WB

After we observe the instruction

is allocated in ROB, we will

check its status with ROB

information.

E.g. complete, trap, committed

11

OoO Pipeline-Follower

2024/9/10

Main / ALU pipeine

Float Point Pipeline

P
R
F

Load/Store pipeine

PIPE-SFP1 (FMAC/FDIV/FMIS)

Fetch

Decode

(rename)

Issue

(allocate

to FROB) ALU pipeine

E1 E2 E3
fast

WB

LD/ST LD/ST LD/ST
fast

WB

E1 E2
fast

WB

E1 E2 E3
fast

WB

We don’t care about pipeline

execution.

We only need to observe the

write-back value and the required

register values.

Staten(pre state): Observed Register

value in Physical register file(PRF)

Staten+1(post state): Observed register committed write

back value.

12

ISA-Formal Overview

2024/9/10 13

 ISA-Formal Framework

DUT
(CPU RTL)

Staten
(pre state))

Instruction

Pipeline Follower

Instruction
Model

Staten+1

(post state)

Staten+1

(arch state)

Formal
Properties

ISAF checker

Golden Instruction model

2024/9/10 14

• ADDI Instruction model by handwriting

rs1

31………20 19…...15 14...12 11……..7 6………. 0

000 rd 0010011 imm12

assign ADDI_retiring = (instr & 32’h707F) == 32’h13;
assign ADDI_result = preState.GPR[instr[19:15]] + instr[31:20];
assign ADDI_rd = instr[11:7];

assert property (@(posedge clk) disable iff (~reset_n)
 ADDI_retiring |-> (ADDI_result == postState.GPR[ADDI_rd]))

Too many !!

Golden Instruction model

• How to efficiently generate enormous amount instructions?
• Utilized the existed open-source Sail-riscv project to transform the Sail

specifications into Verilog, creating an accurate instruction model.

2024/9/10 15

Formal sail

Spec

 AST
(Abstract Syntax

Tree)

Parser System
Verilog

Code
generation

Sail

2024/9/10 16

• A language for defining the instruction-set architecture
semantics.

• engineer-friendly

• Numerous type system

• Given a Sail ISA specification, the tool can:
• Conduct type-check

• Generate executable emulators in C or Ocaml

• Generate a reference ISA model in SystemVerilog

Sail-riscv

2024/9/10 17

• Formal specification of the RISC-V architecture, written in Sail.

• This project Specifies RISC-V ratified extensions in detail.

• Instruction behavior

• Control and status registers

• General purpose registers

• Machine Privilege

• Virtual address translation

• Parameterized over platform-specific options

https://github.com/rems-project/sail

Sail-riscv

Instruction semantic

Abstract syntax tree

Encoding/Decoding

182024/9/10

Sail to SystemVerilog

Execute ITYPE instructions

Decode instruction to ITYPE

• Transform formal specification to Combinational SystemVerilog.

Instruction

192024/9/10

Sail to SystemVerilog

Verilog ADDI semantic

Control flow

• Transform formal specification to Combinational SystemVerilog.

202024/9/10

Sail to SystemVerilog

• Transform formal specification to Combinational SystemVerilog.

212024/9/10

Instruction model

After the code generation, we can activate the ISA model by

1.Input an instruction opcode.

2.Decode instruction to AST.

3.Execute the AST semantic body.

2024/9/10 22

1.

2.

3.

ISA-Formal Overview

2024/9/10 23

 ISA-Formal Framework

DUT
(CPU RTL)

Staten
(pre state))

Instruction

Pipeline Follower

Instruction
Model

Staten+1

(post state)

Staten+1

(arch state)

Formal
Properties

ISAF checker

2024/9/10 24

Formal properties

• ALU instruction
• Instruction successfully retired

• post_state.GPRs == architectural state.GPRs

ADDI x1, x0, ‘h00602

X1[63:2] should be ‘h0180

2024/9/10 25

Formal properties

• Load/Store instruction
• Memory system abstraction

• Oracle address

• Oracle data

• Instruction successfully retired and access oracle memory
• post state == architectural state

• memory data == oracle data

• Constrain Async Interrupt event not happen.
• E.g. assume mip[meip] == 0

• Complexity reduction
• Black-box MMU, DCache, ICache, BTB

Conclusion

• Check instruction functionality:
• mathematical prove the core conform to the RISC-V ISA Spec

• Identifies design errors early in the development process, reducing the
cost and effort required to fix them later.

• Check uArch functionality:
• In CPU pipeline, instruction done based on forwarding(speculative

state)

• In Formal model, instruction done based on register file.(committed
arch state)

• Effective at finding bugs in the datapath, pipeline control,
forwarding/stall logic involving complex sequences of instructions.

2024/9/10 26

Q&A

2024/9/10 27

• Contact
• Stanley, likey714@andestech.com

• SJ, shewu677@andestech.com

• Yung-Ching, ychsiao@andestech.com

mailto:likey714@andestech.com
mailto:shewu677@andestech.com
mailto:ychsiao@andestech.com

	Slide 1: Adopts ISA-Formal On High-End Out-Of-Order Execute RISC-V Cores
	Slide 2: Agenda
	Slide 3: What’s an ISA-Formal?
	Slide 4: ISA view
	Slide 5: ISA-Formal Key Component
	Slide 6: ISA-Formal Overview
	Slide 7: Structure of CPU state
	Slide 8: Pipeline-Follower
	Slide 9: OoO CPU state abstraction
	Slide 10: OoO Pipeline-Follower
	Slide 11: OoO Pipeline-Follower
	Slide 12: OoO Pipeline-Follower
	Slide 13: ISA-Formal Overview
	Slide 14: Golden Instruction model
	Slide 15: Golden Instruction model
	Slide 16: Sail
	Slide 17: Sail-riscv
	Slide 18: Sail-riscv
	Slide 19: Sail to SystemVerilog
	Slide 20: Sail to SystemVerilog
	Slide 21: Sail to SystemVerilog
	Slide 22: Instruction model
	Slide 23: ISA-Formal Overview
	Slide 24
	Slide 25
	Slide 26: Conclusion
	Slide 27: Q&A

