

Adopts ISA-Formal On High-End Out-Of-Order Execute RISC-V Cores

HUANG YU-TSE, WU SHENG-JHAN, HSIAO YUNG-CHING

Golden Instruction model

Formal properties

Conclusion

What's an ISA-Formal?

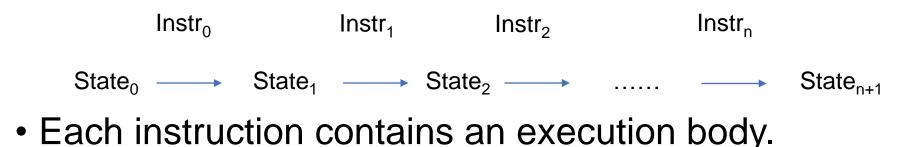
- ISA-Formal
 - An end-to-end framework to verify the core conform to the Instruction-Set Architecture (ISA) spec.
 - bounded model checking (BMC) to explore different sequences of instructions.
- Pros and Cons

Pros

- Single Instruction
 - Error in decode
 - Error in data path
- Multiple Instruction
 - Errors in forwarding logic
 - Errors in register renaming and OoO execution
 - Errors in exception trigger

SYSTEMS INITIATIVE

2024/9/10


Cons

- FP computation
- Mul/Div operation
- Vector operation
- Crypto operation

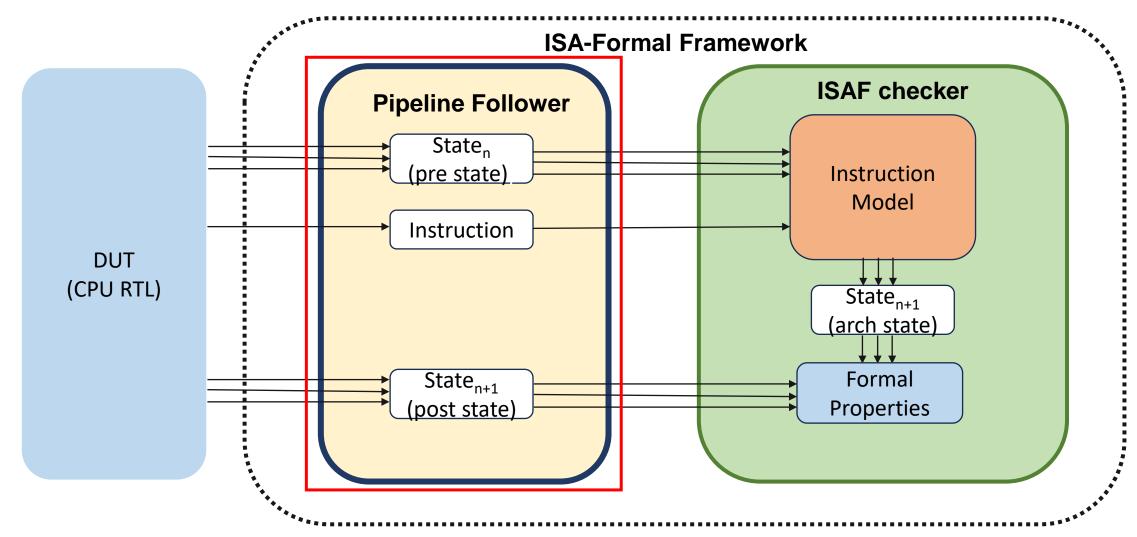
ISA view

- In the ISA view, instructions are seen in a very straightforward manner
- Instruction is considered a state transformation function.

• E.g. ADDI x2, x1, 10

 $\begin{array}{c} ADDI \ x2, x1, \ 10 \\ State_0 \qquad \longrightarrow \qquad State_1 \end{array}$

 $State_1.x2 = State_0.x1+10$

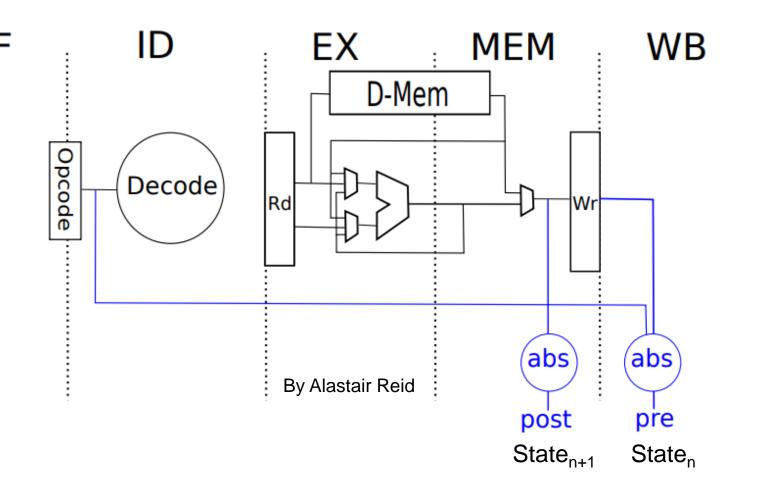

ISA-Formal Key Component

- Golden instruction Model
 - Calculate the expected result.
 - Must be synthesizable.
- Pipeline follower
 - Collect necessary CPU information for building architectural state.
 - Determine when to activate Instruction model and check.
- Formal Properties
 - Assertion properties to verify the instruction result correctness.
 - E.g. when an addi instruction retired implies GPRs of DUT should be same to GPRs of architectural state.
 - Constraint properties to remove unsolvable scenarios in ISA-Formal.
 - E.g. asynchronous interrupts.

ISA-Formal Overview

Structure of CPU state

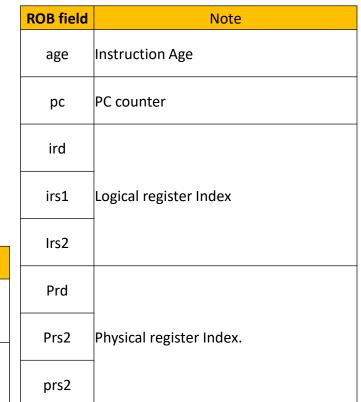
- General purpose registers(GPRs)
- Floating point registers
- Vector registers
- Control and status registers(CSRs)
- Privilege
- Virtual mode
- Trap



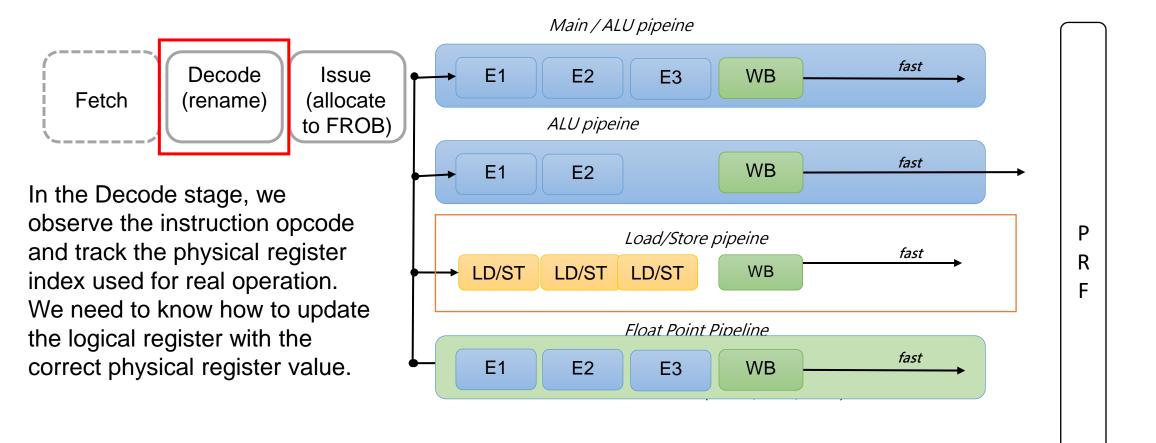
Pipeline-Follower

What do we need for IF verifying ISA architecture?

- Instruction opcode
- State before the instruction execution(pre_state)
- State after the instruction execution by DUT(post_state)

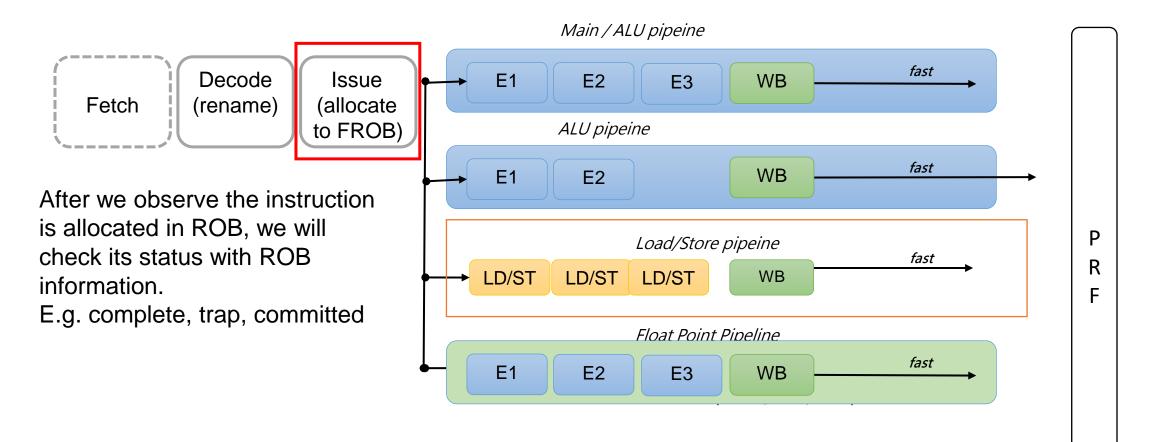


OoO CPU state abstraction


- Decode and Register rename stage
 - Collect instruction operand information
 - Rd, Rs1, Rs2, Immediate value
 - Map the logic register to physical register.
 - Mark Instruction with instruction id.
- Formal Reorder Buffer (FROB)
 - Ensure the instruction committed in order.
 - Observe issued instruction status.
 - Instruction age
 - completed
 - committed
 - Trap
 - Physical register index

ROB field	Note	
completed	Instruction complete	
commited	Instruction committed	

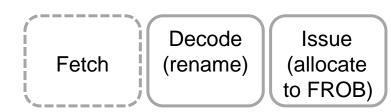
OoO Pipeline-Follower


2024/9/10

2024

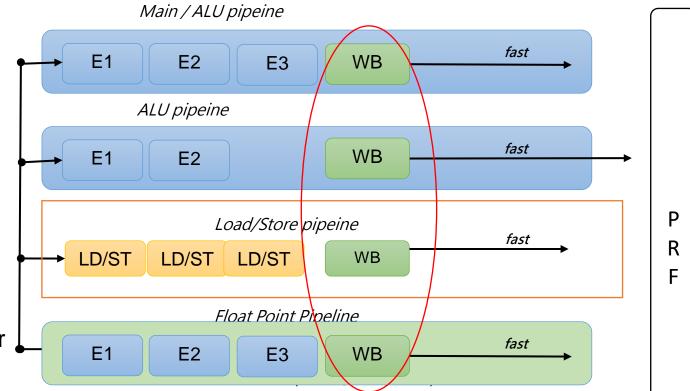
DVCUV

OoO Pipeline-Follower



2024/9/10

OoO Pipeline-Follower

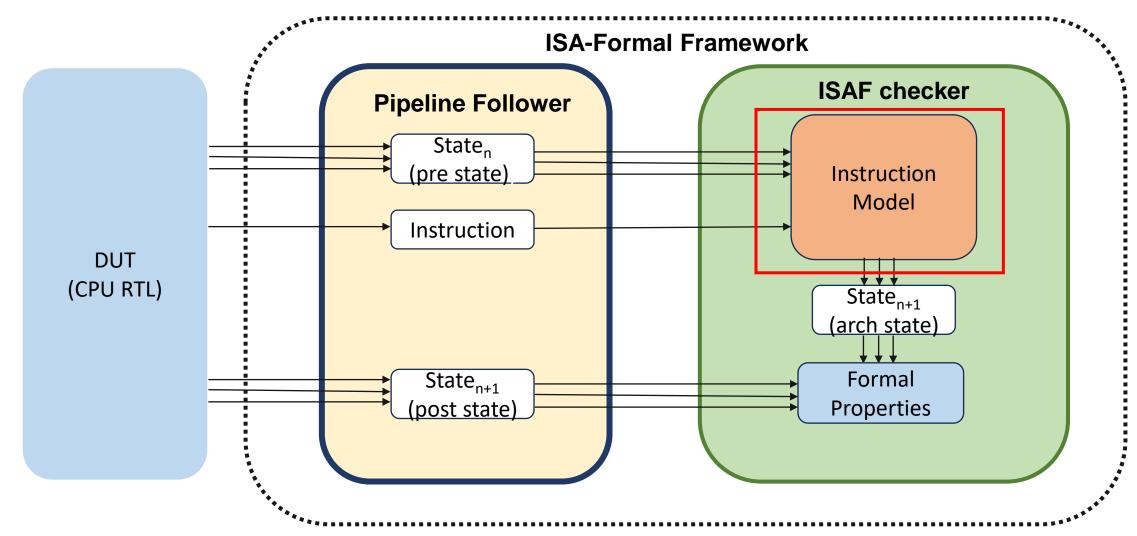


We don't care about pipeline execution.

We only need to observe the write-back value and the required register values.

State_n(pre state): Observed Register value in Physical register file(PRF)

State $_{n+1}$ (post state): Observed register committed write back value.



2024

DVCUN

ISA-Formal Overview

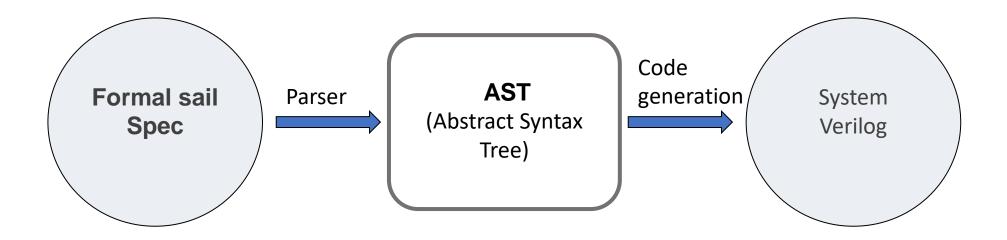
Golden Instruction model

• ADDI Instruction model by handwriting

3120	1915	1412	117	60
imm12	rs1	000	rd	0010011

assign ADDI_retiring = (instr & 32'h707F) == 32'h13; assign ADDI_result = preState.GPR[instr[19:15]] + instr[31:20]; assign ADDI_rd = instr[11:7];

assert property (@(posedge clk) disable iff (~reset_n)
ADDI_retiring |-> (ADDI_result == postState.GPR[ADDI_rd]))



Golden Instruction model

- How to efficiently generate enormous amount instructions?
 - Utilized the existed open-source Sail-riscv project to transform the Sail specifications into Verilog, creating an accurate instruction model.

Sail

- A language for defining the instruction-set architecture semantics.
 - engineer-friendly
 - Numerous type system

```
type xlen : Int = 64
type xlen_bytes : Int = 8
type xlenbits = bits(xlen)
```

```
register PC : xlenbits
register nextPC : xlenbits

register Xs : vector(32, dec, xlenbits)
val rX : regbits -> xlenbits
function rX(r) =
   match r {
        Ob00000 => EXTZ(0x0),
        _ => Xs[unsigned(r)]
    }
```

- Given a Sail ISA specification, the tool can:
 - Conduct type-check
 - · Generate executable emulators in C or Ocaml
 - Generate a reference ISA model in SystemVerilog

Sail-riscv

- Formal specification of the RISC-V architecture, written in Sail.
- This project Specifies RISC-V ratified extensions in detail.
 - Instruction behavior
 - Control and status registers
 - General purpose registers
 - Machine Privilege
 - Virtual address translation
 - Parameterized over platform-specific options

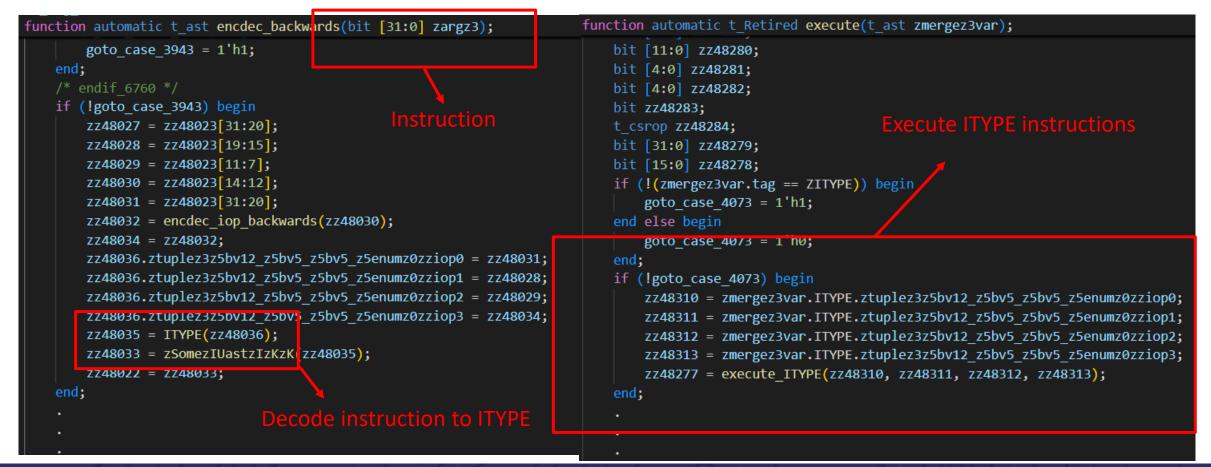
Sail-riscv

Abstract syntax tree

```
union clause ast = ITYPE : (bits(12), regbits, regbits, iop)
/* the encode/decode mapping between AST elements and 32-bit words */
mapping encdec_iop : iop <-> bits(3) = {
   RISCV_ADDI <-> 0b000,
   RISCV_SLTI <-> 0b010,
   RISCV_SLTIU <-> 0b011,
   RISCV_SLTIU <-> 0b011,
   RISCV_ORI <-> 0b110,
   RISCV_ORI <-> 0b100
```

Encoding/Decoding

```
mapping clause encdec = ITYPE(imm, rs1, rd, op)
<-> imm @ rs1 @ encdec_iop(op) @ rd @ 0b0010011
```


/* the execution semantics for the ITYPE instructions */

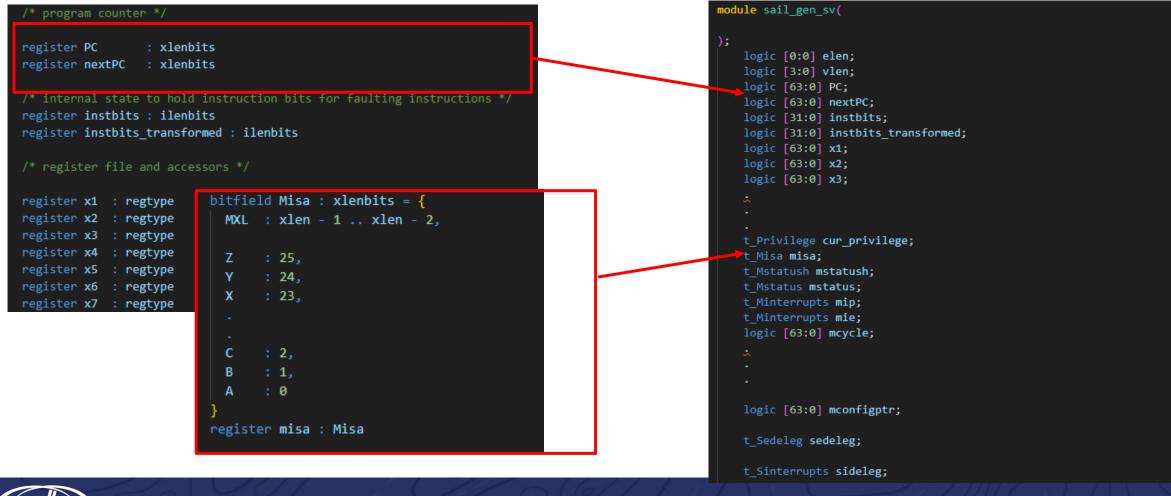
```
function clause execute (ITYPE (imm, rs1, rd, op)) = {
  let rs1_val = X(rs1);
  let immext : xlenbits = EXTS(imm);
  let result : xlenbits = match op {
    RISCV_ADDI => rs1_val + immext,
    RISCV_SLTI => EXTZ(rs1_val <_s immext),
    RISCV_SLTIU => EXTZ(rs1_val <_u immext),
    RISCV_SLTIU => rs1_val & immext,
    RISCV_ORI => rs1_val & immext,
    RISCV_XORI => rs1_val ^ immext
  };
  X(rd) = result;
  true Instruction semantic
```


Sail to SystemVerilog

Transform formal specification to Combinational SystemVerilog.

Sail to SystemVerilog

• Transform formal specification to Combinational SystemVerilog.


<pre>function automatic t_Retired execute_ITYPE(bit [11:0] imm, bit [4:0] rs1, bit [4:0] rd, t_iop op);</pre>	
t_Retired sail_return;	4
<pre>bit goto_case_4035 = 1'h0; bit acts_case_4035 = 4'h0;</pre>	4
<pre>bit goto_case_4036 = 1'h0; bit goto_case_4037 = 4'h0;</pre>	
<pre>bit goto_case_4037 = 1'h0;</pre>	
bit goto_case_4038 = 1'h0; bit goto_case_4039 = 1'h0; Control flow	4
bit goto case 4040 = 1'h0: bit goto finish match 4034 = 1'h0:	4
	4
$zz48199 = rX_bits(rs1);$	4
zz48218 = 65'b000000000000000000000000000000000000	ADDI comontic
	ADDI semantic
<pre>zz48220 = sign_extend(zz48218, zz48219); ==40200 = (==40220 hits)[(2:0];</pre>	4
<pre>zz48200 = {zz48220.bits}[63:0];</pre>	4
if (RISCV_ADDI != op) begin	4
<pre>goto_case_4035 = 1'h1;</pre>	4
end else begin	4
goto_case_4035 = 1'h0;	4
end;	4
if (!goto_case_4035) begin	4
zz48203 = zz48199 + zz48200;	4
end;	
if (!goto_case_4035) begin	4
<pre>goto_finish_match_4034 = 1'h1; end;</pre>	4
/* case 4035 */	4
if (!goto_finish_match_4034) begin	4
if (RISCV_SLTI != op) begin	4
goto case 4036 = 1'h1;	4
end else begin	4
cite begin	

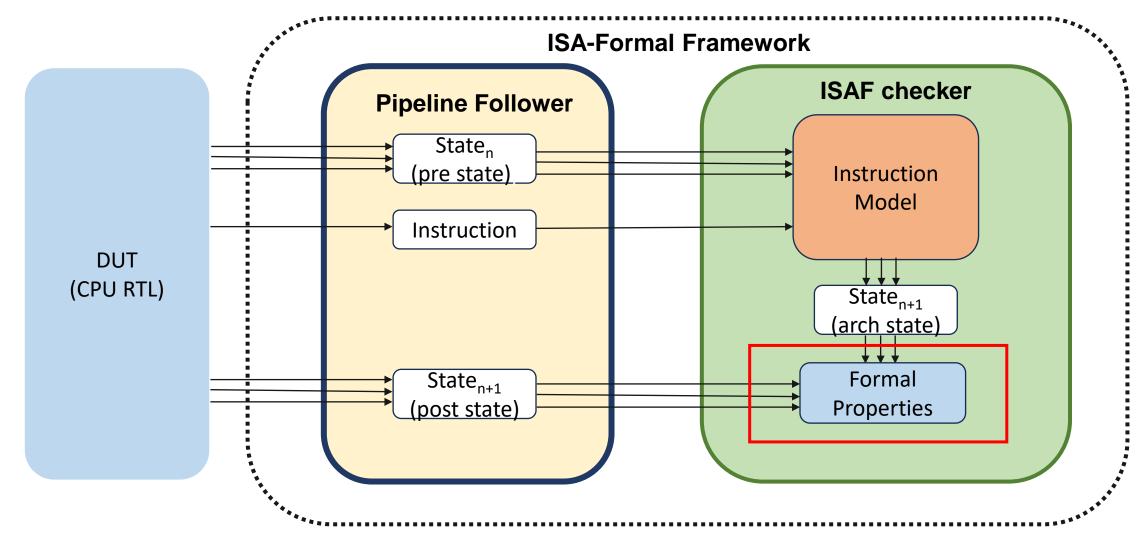
Sail to SystemVerilog

• Transform formal specification to Combinational SystemVerilog.

21

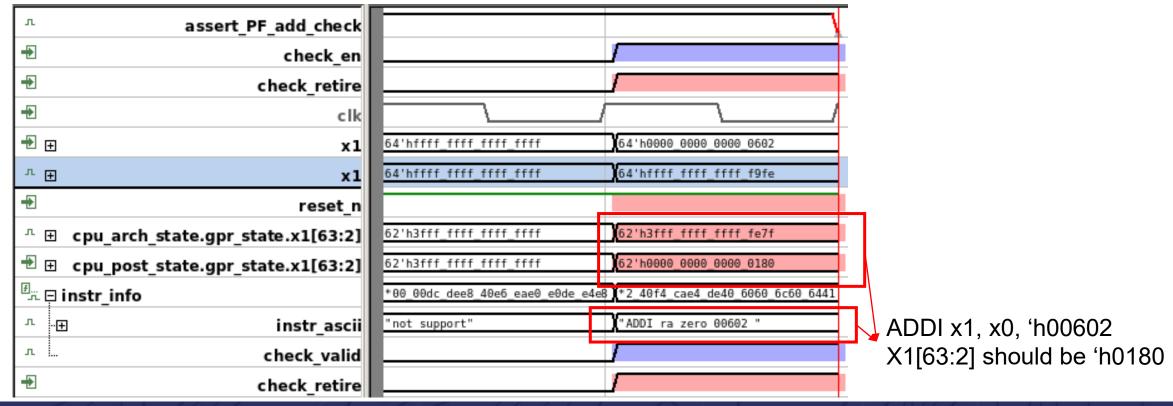
Instruction model

After the code generation, we can activate the ISA model by


- 1.Input an instruction opcode.
- 2. Decode instruction to AST.
- 3. Execute the AST semantic body.

```
always comb begin
   // Input instruction
if (|instruction) begin
    // Initialize the Instruction with pre_state.
    set_cpu_state(cpu_state);
     // Decode and execute instruction by sail-riscv function.
2.
    inst ast = ext decode(instruction);
3
    result = execute(inst ast);
    // Get n+1 state(Arch state)
    arch cpu state = get cpu state(cpu state);
  end
end
```


ISA-Formal Overview



Formal properties

- ALU instruction
 - Instruction successfully retired
 - post_state.GPRs == architectural state.GPRs

Formal properties

- Load/Store instruction
 - Memory system abstraction
 - Oracle address
 - Oracle data
 - Instruction successfully retired and access oracle memory
 - post state == architectural state
 - memory data == oracle data
- Constrain Async Interrupt event not happen.
 - E.g. assume mip[meip] == 0
- Complexity reduction
 - Black-box MMU, DCache, ICache, BTB

Conclusion

- Check instruction functionality:
 - mathematical prove the core conform to the RISC-V ISA Spec
 - Identifies design errors early in the development process, reducing the cost and effort required to fix them later.
- Check uArch functionality:
 - In CPU pipeline, instruction done based on forwarding(speculative state)
 - In Formal model, instruction done based on register file.(committed arch state)
 - Effective at finding bugs in the datapath, pipeline control, forwarding/stall logic involving complex sequences of instructions.

Q&A

- Contact
 - Stanley, <u>likey714@andestech.com</u>
 - SJ, shewu677@andestech.com
 - Yung-Ching, <u>ychsiao@andestech.com</u>

2024