國立清華大學電機研究所

Trojan Horse Detection for RISC-V Cores Using Cross-Auditing

Speaker : 黃祥成 Siang-Cheng Huang Advisor : 黃錫瑜 Shi-Yu Huang

IC-Design Exploration Lab Department of Electrical Engineering National Tsinghua University, Hsinchu, Taiwan

Introduction
Related Work
Preliminaries
Proposed Methodology
Experiment Result
Conclusion

Introduction

Related Work
Preliminaries
Proposed Methodology
Experiment Result
Conclusion

Motivation

Globalization of IC design and manufacturing

To lower the R&D Costs and Time to Market
 Integration of 3rd-party IP is essential in SOC.

■3^{*rd*}-party IP is provided by 3^{*rd*}-party vendor

- Not authorized to access the internal architecture
- Inadvertently or deliberately implanting malicious circuit (Hardware Trojan)
- A maliciously hidden Trojan when activated could cause the system's malfunction or the leaking of confidential information.

Motivation

■Verifying that every IP is Trojan-free during the design stage is essential.

Our goal is to enable designers to identify potential Trojans within 3PIP in a non-invasive manner during the pre-silicon phase, under black box conditions, to ensure hardware root-of-trust/trustworthiness.

Introduction Related Work Software-Based Hardware-Based Preliminaries Proposed Methodology Experiment Result Conclusion

Summarize Related Works

Criterion	Software-Based	Hardware-Based
Test Methods	Unique Program Execution Checking (UPEC)[8], Information Flow Tracking [9], BMC + ATPG [10], ABV[11]-[13]	Microprocessor Protection [14], Memory Protection [15]
Limitations	 Need to pre-defined the security properties. Once the additional vulnerabilities are beyond those properties the method can't find it. Low scalability. Need to target at specific design/HT to establish properties. 	 Disrupt the original framework which leads to additional overhead, such as impacting factors like area, timing, and more. Low scalability. Need to target at specific design/HT to establish properties.

Merits of our method

■More automatic and user-friendly considering that we do not have to manually specify the Trojan models explicitly.

■It is non-invasive and thus does not need to modify the source code of the target IP.

■It covers all three major types of Trojans as reported in Trust-hub [16] – functionality-changing, information-stealing, and denial-of-service.

■It can detect a Trojan even if the Trojan does not attempt to breach the protected memory area as described in [15].

[15]H. Chi, K. Lee, and T. Jao, "Lightweight Hardware-Based Memory Protection Mechanism on IoT Processors", Proc. of IEEE Asian Test Symp., pp. 13-18, 2021

[16] M. Tehranipoor, R. Karri, F. Koushanfar, and M. Potkonjak, "Trusthub," http:// trust-hub.org.

Introduction Related Work Preliminaries Proposed Methodology Experiment Result Conclusion

Preliminaries

- A Hardware Trojan Horses (HTH) [6][7] is often characterized by the following 2 features:
- (1) What are the activating mechanisms for the Trojans?

(2) After a Trojan is activated, how does it affect the functionality?

[6]B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor, "Benchmarking of Hardware Trojans and Maliciously Affected Circuits", Journal of Hardware and Systems Security (HaSS), pp. 85-102, April 2017.

[7]S. Bhunia, M. S. Hsiao, M. Banga and S. Narasimhan, "Hardware Trojan Attacks: Threat Analysis and Countermeasures," in Proceedings of the IEEE, vol. 102, no. 8, pp. 1229-1247, Aug. 2014.

Preliminaries

Threat Model

- Activating Mechanisms
 - **Externally Direct User Input**
 - Internally Conditionally
 - Internally Time-based
- Trojan Effect
 - Denial Signal Transmission
 - **Change of Functionality**
 - Leakage of Information

Fig. 3-1. Illustration of a unified threat model of various Trojans.

[16] M. Tehranipoor, R. Karri, F. Koushanfar, and M. Potkonjak, "Trusthub," http:// trust-hub.org.

Introduction Related Work Preliminaries Proposed Methodology Experiment Result Conclusion

Framework Overview

Criterion of a Trojan

A CUA is considered **Trojan-free** if it satisfies the following two conditions:

- (1) The CUA produces all expected outputs correctly.
- (2) The CUA does not produce any additional output.

Two conditions underpin the 3 types of our HT vulnerability report:

- 1) Mismatch case: Such a case occurs when two cores produce two packets with the same write-address, but different write-data.
- 2) Missing case: Such a case occurs when we cannot find a "corresponding packet" produced by the CUA for a packet produced by the reference core.
- 3) Extra case: Such a case occurs when CUA produces a packet that does not have a corresponding one among the packets produced by the reference core.

Depository Processing for Efficient Cross-Auditing

PQs receive cared outputs **START START Two RISC-V Cores run** benchmark programs **Core-to-memory PQs receive** cared outputs request False **Priority Queue** True New-packet-Cycle Address Data processing procedure Insert $P_{new} =$ <waddr_{new}, wdata_{new}> **Program End** to PQ_{CUA} or PQ_{ref} False True **Report Trojan Horse** Threats Order: Smaller RETURN **Address Smaller Data END**

Depository Processing for Efficient Cross-Auditing

Depository Processing for Efficient Cross-Auditing

Time complexity

■ O(M·log₂ n) where n represents the number of maximum packets stored in any of the two priority queues.

M represents packets throughout the entire functional simulation process.

Benefit of Dynamic PQ management compared to post-processing PQs

Fig. 3. The priority queue size using posts-processing PQs and dynamic PQs.

Introduction Related Work Preliminaries Proposed Methodology Experiment Result Conclusion

Basic Component

RISC-V Cores

A CUA and a reference core (4-stage and 2-stage pipeline respectively)

DPI: Direct Programing Interface

Fig. 5-1. Overview of our framework

RISC-V ISA

RISC-V Compliance

Simulation Time Overhead

Program	Simulation Time For CUA alone	Simulation Time Double-Core Cross-Auditing	Simulation Time overhead (%)
1. Matrix Multiplication	0.84 (s)	0.89 (s)	5.95 %
2. Dhrystone2.1	19.44 (s)	52.00 (s)	167.49 %
3. ISR Sample	0.70 (s)	0.73 (s)	4.29 %
4. RISC-V Arch	1.11 (s)	1.47 (s)	32.43 %
5. RISC-V Compliance Test	0.90 (s)	0.96 (s)	6.67 %
6. RISC-V ISA Test	0.77 (s)	0.78 (s)	1.30 %

 Table 1. Functional simulation times of single RISC-V versus double-core cross-auditing.

Benefit of Dynamic PQ management

Program Name	Program type	Program Description	Processing Time (Basic) (ms)	Processing Time (Dynamic PQ) (ms)	Speedup
Matrix Multiplication		Compute matrix multiplication program	2.88	0.10	28.56 X
Dhrystone2.1	Functional	Core benchmark program	308.82	1.17	264.39 X
ISR Sample		Test Interrupt Service Routine	0.21	0. 13	1.57 X
RISC-V Arch		Fundamental architecture check, do not check all the combination of instruction sets.	2.50	0.14	17.74 X
RISC-V Compliance	Structural	Verify RISC-V processor compatibility, functionality, and adherence to minimal instruction usage.	2.19	0.12	18.09 X
RISC-V ISA		Confirm that all RV32I instructions are operational.	0.11	0.10	1.11 X

Table 5-2. Processing Time benefits of using the dynamic PQ technique versus the basic post-processing technique.

Trojan Experiment

Trojan Name	Trojan Effect	Activation Mechanism	Affected Care Outputs (ACO) Detection Rate
MC8051-T800		Externally direct user input	100
PIC16F84-T700	Denial of Signal	Internally conditionally triggered	100
PIC16F84-T100	Transmission		100
PIC16F84-T200			100
PIC16F84-T400			100
MC8051-T600		Externally direct user input	100
MC8051-T400		Internally conditionally triggered	100
MC8051-T500	Change of Functionality		100
B19-T300		Internally time-based triggered	100
B19-T400			100
B19-T500			100
PIC16F84-T300	Leakage of Information	Internally conditionally triggered	100

Table 5-3. Experimental results on detecting various Trojans implanted into the RISC-V core under auditing.

PIC16F84-T100

Denial of Signal Transmission/Internally conditionally activated

	Normal Session		Trojan triggered	Different Behavior	
clk I2c_rdata					
Trojan counter Trojan valid <u>Core Under Audit</u>	93 94 95 96 97 98 99 140	102 103 104 105 106 107 108 1 Trojan activa	109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 Ite Trojan deac	3 124 125 126 27 0 3 4 5 6 7 8 9 tivate	
c2i_addr_tmp c2i_addr_o exu2csr exc	E1000E1000E1000E1000E1000E1000E1000E10		וואונואונאונואונגאונגאונגאונגאונגאונגאונ))=)))=)))=))(=))(=))(=))(=))(=))(=))(=	
c2d_req c2d_addr c2d_wdata)))]±+_())[±+_)))[±+_)))[±+_)()[±+_)()[±+_)()[±+_)	אראיין אראיי ס	∩∩∩∩∩ תתתתת עיצוניצונג תאמוט איא אוניצונג אוניצונגיצונגיצונג תאמוט איא או	
Reference Core c2d_req c2d_addr					
c2d_wdata	onakanon o nakanon o nakanon		Nekmion o nekmion o nekmion o nekmion	· ····································	
	Normal Session		TRAP ENTRY	Trap exit	
Trojan valid Core Under Audit					
c2i_addr_tmp c2i_addr_o exu2csr_exc	oc+ bco bcc bco brow bro	ro , prc , bu fa , 5fe , 60	100 104 1 100 100 100 12 1c2 1c6 1 1ca 1ce 1c2 SCR1_EXC_CODE_ILLEGAL_INSTR NSTR SCR1_EX+ SCR1_EXC_CODE_ILL	166 168 166 160 164 LEGAL_INSTR SCR1_EX* SCR1_EXC_CODE_ILLEGAL	

Fig. 5-2. The simulation waveforms of our framework for a RISC-V core implanted with a PIC16F84-T100 Trojan in [16]. The other reference core is Trojan-free.

Introduction Related Work Preliminaries Proposed Methodology Experiment Result Further Discussion Conclusion

Conclusion

Cross-auditing framework is very user-friendly as it does not need to specify the Trojan models explicitly.

■It is non-invasive as it does not require the source codes of the core under auditing.

- Low processing-time overhead complexity of only O(log2 n) for each care-output packet produced during the cross-auditing process, with n denoting the unmatched packets between the two cores.
- 9 Trojan types reported in a well-recognized "Trust-hub" platform show its nearly 100% coverage.

The End

Reference

- [1] S. Bhunia, M. Hsiao, M. Banga, and S. Narasimhan, "Hardware Trojan Attacks: Threat Analysis and Countermeasures," *Proceedings of the IEEE*, vol. 102, no. 8, pp. 1229-1247, 2014.
- [2] M. Tehranipoor and F. Koushanfar, "A Survey of Hardware Trojan Taxonomy and Detection," IEEE Design and Test of Computers, vol. 27, no. 1, pp. 10-25, 2010.
- [3] J. Rajesh et al., "Hardware trojan attacks in soc and noc," in The Hardware Trojan War. Springer, 2018, pp. 55–74.
- [4] Xiaolong Guo, R. G. Dutta, Yier Jin, F. Farahmandi, and P. Mishra, "Pre-silicon security verification and validation: A formal perspective," 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1-6, 2015.
- [5] H. Salmani, M. Tehranipoor, and R. Karri, "On Design vulnerability analysis and trust benchmark development", Proc. of IEEE Int'l Conf. on Computer Design (ICCD), pp. 471-474, 2013.
- [6] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor, "Benchmarking of Hardware Trojans and Maliciously Affected Circuits", *Journal of Hardware and Systems Security (HaSS)*, pp. 85-102, April 2017.
- [7] S. Bhunia, M. S. Hsiao, M. Banga and S. Narasimhan, "Hardware Trojan Attacks: Threat Analysis and Countermeasures," in Proceedings of the IEEE, vol. 102, no. 8, pp. 1229-1247, Aug. 2014.

Reference

- [8] M. R. Fadiheh, D. Stoffel, C. Barrett, S. Mitra, and W. Kunz, "Processor Hardware Security Vulnerabilities and their Detection by Unique Program Execution Checking", Proc. of IEEE Design Automation and Test in Europe, pp. 994-999, 2019.
- [9] Z. Liu, O. Arias, W. Fu, Y. Jin, and X. Guo, "Inter-IP Malicious Modification Detection through Static Information Flow Tracking", Proc. of IEEE Design Automation and Test in Europe, pp. 600-603, 2022.
- [10]J. Rajendran, V. Vedula, and R. Karri, "Detecting Malicious Modifications of Data in Third-Party Intellectual Property Cores", Proc. of IEEE Design Automation Conf., pp. 1-6, 2015.
- [11]IEEE Standard for SystemVerilog–Unified Hardware Design, Specification, and Verification Language, IEEE 1800-2012 Std., 2013.
- [12]M. Orenes-Vera, A. Manocha, D. Wentzlaff and M. Martonosi, "AutoSVA: Democratizing Formal Verification of RTL Module Interactions," 2021 58th ACM/IEEE Design Automation Conference (DAC), pp. 535-540, 2021.
- [13]P. Bhamidipati, S. M. Achyutha, and R. Vemuri, "Security Analysis of a System-on-Chip Using Assertion-Based Verification," Proc. of IEEE Int'l Midwest Symposium on Circuits and Systems (MWSCAS), pp. 826-831, 2021.

Reference

- [14]A. Palumbo, L. Cassano, P. Reviriego, G. Bianchi, and M. Ottavi, "A Lightweight Security Checking Module to Protect Microprocessors against Hardware Trojan Horses", Proc. of IEEE Symp. on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, pp. 1-6, 2021.
- [15]H. Chi, K. Lee, and T. Jao, "Lightweight HardwareBased Memory Protection Mechanism on IoT Processors", Proc. of IEEE Asian Test Symp., pp. 13-18, 2021.
- ■[16]M. Tehranipoor, R. Karri, F. Koushanfar, and M. Potkonjak, "Trusthub," http:// trust-hub.org.
- [17]M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, "Meltdown," arXiv preprint arXiv:1801.01207, 2018.
- [18]P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, "Spectre attacks: Exploiting speculative execution," arXiv preprint arXiv:1801.01203, 2018.
- [19]SCR1 RISC-V Core https://github.com/syntacore/scr1.
- [20] "EDA cloud Cell-based Flow" Taiwan Semiconductor Research Institute, TSRI