
IC-Design Exploration Lab

Department of Electrical Engineering

National Tsinghua University, Hsinchu, Taiwan

Trojan Horse Detection for RISC-V Cores Using

Cross-Auditing

Speaker : 黃祥成 Siang-Cheng Huang
Advisor : 黃錫瑜 Shi-Yu Huang

國立清華大學電機研究所

2

Outline

◼Introduction
◼Related Work
◼Preliminaries
◼Proposed Methodology
◼Experiment Result
◼Conclusion

3

Outline

◼Introduction
◼Related Work
◼Preliminaries
◼Proposed Methodology
◼Experiment Result
◼Conclusion

4

Motivation

◼Globalization of IC design and manufacturing

◼To lower the R&D Costs and Time to Market

◼Integration of 𝟑𝒓𝒅-party IP is essential in SOC.

◼𝟑𝒓𝒅-party IP is provided by 𝟑𝒓𝒅-party vendor

◼Not authorized to access the internal architecture

◼Inadvertently or deliberately implanting malicious circuit (Hardware Trojan)

◼A maliciously hidden Trojan when activated could cause the system’s malfunction or

the leaking of confidential information.

5

Motivation

◼Verifying that every IP is Trojan-free during the design stage is essential.

◼Our goal is to enable designers to identify potential Trojans within 3PIP in a

non-invasive manner during the pre-silicon phase, under black box conditions,

to ensure hardware root-of-trust/trustworthiness.

6

Outline

◼Introduction
◼Related Work
◼Software-Based
◼Hardware-Based
◼Preliminaries
◼Proposed Methodology
◼Experiment Result
◼Conclusion

7

Summarize Related Works

Criterion Software-Based Hardware-Based

Test

Methods

Unique Program Execution Checking

(UPEC) [8],

Information Flow Tracking [9],

BMC + ATPG [10],

ABV[11]-[13]

Microprocessor Protection [14],

Memory Protection [15]

Limitations

1. Need to pre-defined the security

properties. Once the additional

vulnerabilities are beyond those

properties the method can’t find

it.

2. Low scalability. Need to target at

specific design/HT to establish

properties.

1. Disrupt the original framework

which leads to additional overhead,

such as impacting factors like area,

timing, and more.

2. Low scalability. Need to target at

specific design/HT to establish

properties.

8

Merits of our method

◼More automatic and user-friendly considering that we do not have to manually specify the

Trojan models explicitly.

◼It is non-invasive and thus does not need to modify the source code of the target IP.

◼It covers all three major types of Trojans as reported in Trust-hub [16] – functionality-changing,

information-stealing, and denial-of-service.

◼It can detect a Trojan even if the Trojan does not attempt to breach the protected memory area

as described in [15].

[16]M. Tehranipoor, R. Karri, F. Koushanfar, and M. Potkonjak, “Trusthub,” http:// trust-hub.org.

[15]H. Chi, K. Lee, and T. Jao, “Lightweight Hardware-Based Memory Protection Mechanism on IoT Processors”, Proc. of IEEE Asian Test Symp., pp. 13-
18, 2021

9

Outline

◼Introduction
◼Related Work
◼Preliminaries
◼Proposed Methodology
◼Experiment Result
◼Conclusion

10

Preliminaries

[6]B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor, “Benchmarking of Hardware Trojans and Maliciously Affected Circuits”,
Journal of Hardware and Systems Security (HaSS), pp. 85-102, April 2017.

◼A Hardware Trojan Horses (HTH) [6][7] is often characterized by the

following 2 features:

(1) What are the activating mechanisms for the Trojans?

(2) After a Trojan is activated, how does it affect the functionality?

[7]S. Bhunia, M. S. Hsiao, M. Banga and S. Narasimhan, "Hardware Trojan Attacks: Threat Analysis and Countermeasures," in Proceedings of the IEEE,
vol. 102, no. 8, pp. 1229-1247, Aug. 2014.

11

Tampered Data

Denial
of Data

Transmission

Leak of
Sensitive Data

External
user input

IP

Control Circuit

Data Path

Denial of Signal Transmission
(Trojan)

Change of Functionality
(Trojan)

Leakage of Information
(Trojan)

Condition

State
Condition

Internal
Timer

Internal
Timer

Internal
Timer

Triggered

Triggered

Triggered

Preliminaries

[16]M. Tehranipoor, R. Karri, F. Koushanfar, and M. Potkonjak, “Trusthub,” http:// trust-hub.org.

◼Threat Model

◼Activating Mechanisms

◼Externally Direct User Input

◼Internally Conditionally

◼Internally Time-based

◼Trojan Effect

◼Denial Signal Transmission

◼Change of Functionality

◼Leakage of Information Fig. 3-1. Illustration of a unified threat model of various

Trojans.

12

Outline

◼Introduction
◼Related Work
◼Preliminaries
◼Proposed Methodology
◼Experiment Result
◼Conclusion

13

Framework Overview

Integrated

Testbench

RISC-V Core 1

(e.g., 4-stage

pipeline)

RISC-V Core 2

(e.g., 2-stage

pipeline)

Trojan Horse (HT)

Vulnerability

Report

Reference Core

Core Under Auditing (CUA)

IP1

IP2

“Care outputs”

Auditor

Module

Cared Outputs
Depository(Core-to-mem request = 1’b1) ?

Packet{waddr[31:0], wdata[31:0]}

Type1 Mismatch case:
IP1 = {Cycle time, IP1 address, IP1 data} vs. IP2 = {Cycle time, IP2 address, IP2 data}
Type2 Missing case:
IP2 = {Cycle time, IP1/2 address, IP1/2 data} is missing from IP1
Type3 Extra case:
IP1 = {Cycle time, IP1/2 address, IP1/2 data} is additional to IP2

Memory

Model
Memory

Model

Benchmark

Programs

RISC-V toolchain

14

Criterion of a Trojan

◼A CUA is considered Trojan-free if it satisfies the following two conditions:

(1)The CUA produces all expected outputs correctly.

(2)The CUA does not produce any additional output.

◼Two conditions underpin the 3 types of our HT vulnerability report:

1) Mismatch case: Such a case occurs when two cores produce two packets with the same

write-address, but different write-data.

2) Missing case: Such a case occurs when we cannot find a “corresponding packet” produced

by the CUA for a packet produced by the reference core.

3) Extra case: Such a case occurs when CUA produces a packet that does not have a

corresponding one among the packets produced by the reference core.

15

Depository Processing for Efficient Cross-Auditing

False
Core-to-memory

request

START

True

RETURN

Program End

START

Two RISC-V Cores run
benchmark programs

PQs receive
cared outputs

New-packet-
processing procedure

Report Trojan Horse
Threats

END

True
False

Order:
Smaller
Address
Smaller Data

Priority Queue

DataAddressCycle

Insert
< 𝒅𝒅𝒓 𝒅 >

to or 𝒓

◼PQs receive cared outputs

16

Depository Processing for Efficient Cross-Auditing

◼New-packet-processing procedure

START

Find a packet from the
other PQ that

< 𝒅𝒅𝒓𝒐 𝒉 𝒓> of 𝒐 𝒉 𝒓
is equivalent to

< 𝒅𝒅𝒓 > of

True

Pop out matched packets
from PQ and PQ𝒓

< 𝒅 𝒐 𝒉 𝒓> of 𝒐 𝒉 𝒓
is equivalent to

< 𝒅 > of

True

RETURN

Put to its PQ
(Dangling Packet)

False

False

Report mismatch case:
P P𝒐 𝒉 𝒓 ,

and pop out from PQs

17

Dynamic PQs

Post-processing PQs

Depository Processing for Efficient Cross-Auditing

◼Time complexity

◼O(M·log2 n) where n represents the number of maximum packets stored in any of the two priority queues.

M represents packets throughout the entire functional simulation process.

◼Benefit of Dynamic PQ management compared to post-processing PQs

Fig. 3. The priority queue size using posts-processing PQs and

dynamic PQs.

18

Outline

◼Introduction
◼Related Work
◼Preliminaries
◼Proposed Methodology
◼Experiment Result
◼Conclusion

19

Integrated Testbench

Memory Model

Security
Auditor

4-stage RISC-V Core
(CUA)

DPI

2-stage RISC-V Core
(reference core)

Memory Model
READ

WRITE

READ

WRITE

Benchmark
Program

Benchmark
Program

DPI: Direct Programing Interface

C-based

Basic Component

◼RISC-V Cores

◼ A CUA and a reference core (4-stage and 2-stage pipeline respectively)

◼Benchmark Program

◼ Functional

◼ Matrix Multiplication

◼ Dhrystone 2.1

◼ ISR sample

◼ Structural

◼ RISC-V Arch

◼ RISC-V Compliance

◼ RISC-V ISA

Fig. 5-1. Overview of our framework

20

Simulation Time Overhead

Table 1. Functional simulation times of single RISC-V versus

double-core cross-auditing.

Program
Simulation Time

For CUA alone

Simulation Time

Double-Core Cross-Auditing

Simulation Time

 overhead (%)

1. Matrix Multiplication 0.84 (s) 0.89 (s) 5.95 %

2. Dhrystone2.1 19.44 (s) 52.00 (s) 167.49 %

3. ISR Sample 0.70 (s) 0.73 (s) 4.29 %

4. RISC-V Arch 1.11 (s) 1.47 (s) 32.43 %

5. RISC-V Compliance Test 0.90 (s) 0.96 (s) 6.67 %

6. RISC-V ISA Test 0.77 (s) 0.78 (s) 1.30 %

1.30 ~ 167.49 %

21

Benefit of Dynamic PQ management

Table 5-2. Processing Time benefits of using the dynamic PQ

technique versus the basic post-processing technique.

Program Name
Program

type
Program Description

Processing Time

(Basic)

(ms)

Processing

Time

(Dynamic PQ)

(ms)

Speedup

Matrix

Multiplication

Functional

Compute matrix multiplication

program
2.88 0.10 28.56 X

Dhrystone2.1 Core benchmark program 308.82 1.17 264.39 X

ISR Sample Test Interrupt Service Routine 0.21 0. 13 1.57 X

RISC-V Arch

Structural

Fundamental architecture

check, do not check all the

combination of instruction sets.

2.50 0.14 17.74 X

RISC-V

Compliance

Verify RISC-V processor

compatibility, functionality, and

adherence to minimal

instruction usage.

2.19 0.12 18.09 X

RISC-V ISA
Confirm that all RV32I

instructions are operational.
0.11 0.10 1.11 X

22

Trojan Experiment

Table 5-3. Experimental results on detecting various Trojans

implanted into the RISC-V core under auditing.

Trojan Name Trojan Effect Activation Mechanism
Affected Care Outputs

(ACO) Detection Rate

MC8051-T800

Denial of Signal

Transmission

Externally direct user

input
100

PIC16F84‐T700

Internally

conditionally triggered

100

PIC16F84‐T100 100

PIC16F84‐T200 100

PIC16F84‐T400 100

MC8051-T600

Change of

Functionality

Externally direct user

input
100

MC8051-T400
Internally

conditionally triggered

100

MC8051-T500 100

B19-T300

Internally time-based

triggered

100

B19-T400 100

B19-T500 100

PIC16F84‐T300
Leakage of

Information

Internally

conditionally triggered
100

23

PIC16F84-T100

Fig. 5-2. The simulation waveforms of our framework for a RISC-V core implanted with a

PIC16F84-T100 Trojan in [16]. The other reference core is Trojan-free.

◼ Denial of Signal Transmission/Internally conditionally activated

TRAP ENTRY

Normal Session Trojan triggered
Different
Behavior

clk
I2c_rdata

Trojan counter
Trojan valid

c2i_addr_tmp
c2i_addr_o

exu2csr_exc

c2d_req
c2d_addr

c2d_wdata

Trojan activate

Trojan valid

c2i_addr_tmp
c2i_addr_o
exu2csr_exc

c2d_req
c2d_addr
c2d_wdata

Reference Core

Core Under Audit

Normal Session

Core Under Audit

Trap exit

Trojan deactivate

Affected care outputs

24

Outline

◼Introduction
◼Related Work
◼Preliminaries
◼Proposed Methodology
◼Experiment Result
◼Further Discussion
◼Conclusion

25

Conclusion

◼Cross-auditing framework is very user-friendly as it does not need to specify the

Trojan models explicitly.

◼It is non-invasive as it does not require the source codes of the core under auditing.

◼Low processing-time overhead complexity of only O(log2 n) for each care-output

packet produced during the cross-auditing process, with n denoting the unmatched

packets between the two cores.

◼9 Trojan types reported in a well-recognized “Trust-hub” platform show its nearly

100% coverage.

26

The End

27

Reference

◼[1] S. Bhunia, M. Hsiao, M. Banga, and S. Narasimhan, “Hardware Trojan Attacks: Threat Analysis and
Countermeasures,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1229-1247, 2014.

◼[2] M. Tehranipoor and F. Koushanfar, “A Survey of Hardware Trojan Taxonomy and Detection,” IEEE Design
and Test of Computers, vol. 27, no. 1, pp. 10-25, 2010.

◼[3] J. Rajesh et al., “Hardware trojan attacks in soc and noc,” in The Hardware Trojan War. Springer, 2018, pp.
55–74.

◼[4] Xiaolong Guo, R. G. Dutta, Yier Jin, F. Farahmandi, and P. Mishra, "Pre-silicon security verification and
validation: A formal perspective," 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1-6,
2015.

◼[5] H. Salmani, M. Tehranipoor, and R. Karri, "On Design vulnerability analysis and trust benchmark
development", Proc. of IEEE Int’l Conf. on Computer Design (ICCD), pp. 471-474, 2013.

◼[6] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor, “Benchmarking of Hardware Trojans
and Maliciously Affected Circuits”, Journal of Hardware and Systems Security (HaSS), pp. 85-102, April 2017.

◼[7] S. Bhunia, M. S. Hsiao, M. Banga and S. Narasimhan, "Hardware Trojan Attacks: Threat Analysis and
Countermeasures," in Proceedings of the IEEE, vol. 102, no. 8, pp. 1229-1247, Aug. 2014.

28

Reference

◼[8] M. R. Fadiheh, D. Stoffel, C. Barrett, S. Mitra, and W. Kunz, “Processor Hardware Security Vulnerabilities
and their Detection by Unique Program Execution Checking”, Proc. of IEEE Design Automation and Test in
Europe, pp. 994-999, 2019.

◼[9] Z. Liu, O. Arias, W. Fu, Y. Jin, and X. Guo, “Inter-IP Malicious Modification Detection through Static
Information Flow Tracking”, Proc. of IEEE Design Automation and Test in Europe, pp. 600-603, 2022.

◼[10]J. Rajendran, V. Vedula, and R. Karri, “Detecting Malicious Modifications of Data in Third-Party
Intellectual Property Cores”, Proc. of IEEE Design Automation Conf., pp. 1-6, 2015.

◼[11]IEEE Standard for SystemVerilog–Unified Hardware Design, Specification, and Verification Language, IEEE
1800-2012 Std., 2013.

◼[12]M. Orenes-Vera, A. Manocha, D. Wentzlaff and M. Martonosi, "AutoSVA: Democratizing Formal
Verification of RTL Module Interactions," 2021 58th ACM/IEEE Design Automation Conference (DAC), pp.
535-540, 2021.

◼[13]P. Bhamidipati, S. M. Achyutha, and R. Vemuri, "Security Analysis of a System-on-Chip Using Assertion-
Based Verification," Proc. of IEEE Int’l Midwest Symposium on Circuits and Systems (MWSCAS), pp. 826-831,
2021.

29

Reference

◼[14]A. Palumbo, L. Cassano, P. Reviriego, G. Bianchi, and M. Ottavi, “A Lightweight Security Checking Module
to Protect Microprocessors against Hardware Trojan Horses”, Proc. of IEEE Symp. on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems, pp. 1-6, 2021.

◼[15]H. Chi, K. Lee, and T. Jao, “Lightweight HardwareBased Memory Protection Mechanism on IoT
Processors”, Proc. of IEEE Asian Test Symp., pp. 13-18, 2021.

◼[16]M. Tehranipoor, R. Karri, F. Koushanfar, and M. Potkonjak, “Trusthub,” http:// trust-hub.org.

◼[17]M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M.
Hamburg, “Meltdown,” arXiv preprint arXiv:1801.01207, 2018.

◼[18]P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y.
Yarom, “Spectre attacks: Exploiting speculative execution,” arXiv preprint arXiv:1801.01203, 2018.

◼[19]SCR1 RISC-V Core – https://github.com/syntacore/scr1.

◼[20] “EDA cloud Cell-based Flow” Taiwan Semiconductor Research Institute, TSRI

	預設章節
	Slide 1
	Slide 2: Outline

	Intro
	Slide 3: Outline
	Slide 4: Motivation
	Slide 5: Motivation

	Related Work
	Slide 6: Outline
	Slide 7: Summarize Related Works
	Slide 8: Merits of our method

	Preliminaries
	Slide 9: Outline
	Slide 10: Preliminaries
	Slide 11: Preliminaries

	Proposed Methodology
	Slide 12: Outline
	Slide 13: Framework Overview
	Slide 14: Criterion of a Trojan
	Slide 15: Depository Processing for Efficient Cross-Auditing
	Slide 16: Depository Processing for Efficient Cross-Auditing
	Slide 17: Depository Processing for Efficient Cross-Auditing

	Exoeriment Result
	Slide 18: Outline
	Slide 19: Basic Component
	Slide 20: Simulation Time Overhead
	Slide 21: Benefit of Dynamic PQ management
	Slide 22: Trojan Experiment
	Slide 23: PIC16F84-T100

	Conclusion
	Slide 24: Outline
	Slide 25: Conclusion
	Slide 26
	Slide 27: Reference
	Slide 28: Reference
	Slide 29: Reference

