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Motivation

◼Globalization of IC design and manufacturing 

◼To lower the R&D Costs and Time to Market

◼Integration of 𝟑𝒓𝒅-party IP is essential in SOC.

◼𝟑𝒓𝒅-party IP is provided by 𝟑𝒓𝒅-party vendor

◼Not authorized to access the internal architecture

◼Inadvertently or deliberately implanting malicious circuit (Hardware Trojan)

◼A maliciously hidden Trojan when activated could cause the system’s malfunction or 

the leaking of confidential information.
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Motivation

◼Verifying that every IP is Trojan-free during the design stage is essential.

◼Our goal is to enable designers to identify potential Trojans within 3PIP in a 

non-invasive manner during the pre-silicon phase, under black box conditions, 

to ensure hardware root-of-trust/trustworthiness.
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Summarize Related Works

Criterion Software-Based Hardware-Based

Test 

Methods

Unique Program Execution Checking 

( UPEC ) [8],

Information Flow Tracking [9],

BMC + ATPG [10],

ABV[11]-[13]

Microprocessor Protection [14], 

Memory Protection [15]

Limitations

1. Need to pre-defined the security 

properties. Once the additional 

vulnerabilities are beyond those 

properties the method can’t find 

it. 

2. Low scalability. Need to target at 

specific design/HT to establish 

properties.

1. Disrupt the original framework 

which leads to additional overhead, 

such as impacting factors like area, 

timing, and more.

2. Low scalability. Need to target at 

specific design/HT to establish 

properties. 
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Merits of our method

◼More automatic and user-friendly considering that we do not have to manually specify the 

Trojan models explicitly.

◼It is non-invasive and thus does not need to modify the source code of the target IP.

◼It covers all three major types of Trojans as reported in Trust-hub [16] – functionality-changing, 

information-stealing, and denial-of-service.

◼It can detect a Trojan even if the Trojan does not attempt to breach the protected memory area 

as described in [15].

[16]M. Tehranipoor, R. Karri, F. Koushanfar, and M. Potkonjak, “Trusthub,” http:// trust-hub.org.

[15]H. Chi, K. Lee, and T. Jao, “Lightweight Hardware-Based Memory Protection Mechanism on IoT Processors”, Proc. of IEEE Asian Test Symp., pp. 13-
18, 2021
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Preliminaries

[6]B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor, “Benchmarking of Hardware Trojans and Maliciously Affected Circuits”, 
Journal of Hardware and Systems Security (HaSS), pp. 85-102, April 2017.

◼A Hardware Trojan Horses (HTH) [6][7] is often characterized by the 

following 2 features:

(1) What are the activating mechanisms for the Trojans? 

(2) After a Trojan is activated, how does it affect the functionality? 

[7]S. Bhunia, M. S. Hsiao, M. Banga and S. Narasimhan, "Hardware Trojan Attacks: Threat Analysis and Countermeasures," in Proceedings of the IEEE, 
vol. 102, no. 8, pp. 1229-1247, Aug. 2014.
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[16]M. Tehranipoor, R. Karri, F. Koushanfar, and M. Potkonjak, “Trusthub,” http:// trust-hub.org.

◼Threat Model

◼Activating Mechanisms

◼Externally Direct User Input

◼Internally Conditionally

◼Internally Time-based

◼Trojan Effect

◼Denial Signal Transmission

◼Change of Functionality

◼Leakage of Information Fig. 3-1. Illustration of a unified threat model of various 

Trojans.
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Framework Overview
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Criterion of a Trojan

◼A CUA is considered Trojan-free if it satisfies the following two conditions:

(1)The CUA produces all expected outputs correctly. 

(2)The CUA does not produce any additional output.

◼Two conditions underpin the 3 types of our HT vulnerability report:

1) Mismatch case: Such a case occurs when two cores produce two packets with the same 

write-address, but different write-data.

2) Missing case: Such a case occurs when we cannot find a “corresponding packet” produced 

by the CUA for a packet produced by the reference core.

3) Extra case: Such a case occurs when CUA produces a packet that does not have a 

corresponding one among the packets produced by the reference core.
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Depository Processing for Efficient Cross-Auditing
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Depository Processing for Efficient Cross-Auditing

◼New-packet-processing procedure

START

Find a packet from the 
other PQ that 

<  𝒅𝒅𝒓𝒐 𝒉 𝒓> of  𝒐 𝒉 𝒓 
is equivalent to  

<  𝒅𝒅𝒓   > of     

True

Pop out matched packets 
from PQ   and PQ𝒓  

< 𝒅   𝒐 𝒉 𝒓> of  𝒐 𝒉 𝒓 
is equivalent to  

< 𝒅      > of     

True

RETURN

Put     to its PQ
(Dangling Packet)

False

False

Report mismatch case:
P    P𝒐 𝒉 𝒓 , 

and pop out from PQs



17

Dynamic PQs

Post-processing PQs

Depository Processing for Efficient Cross-Auditing

◼Time complexity

◼O(M·log2 n) where n represents the number of maximum packets stored in any of the two priority queues. 

M represents packets throughout the entire functional simulation process.

◼Benefit of Dynamic PQ management compared to post-processing PQs

Fig. 3. The priority queue size using posts-processing PQs and 

dynamic PQs. 



18

Outline

◼Introduction
◼Related Work
◼Preliminaries
◼Proposed Methodology
◼Experiment Result
◼Conclusion



19
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◼ RISC-V ISA

Fig. 5-1. Overview of our framework
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Simulation Time Overhead

Table 1. Functional simulation times of single RISC-V versus 

double-core cross-auditing.

Program
Simulation Time

For CUA alone

Simulation Time

Double-Core Cross-Auditing

Simulation Time

 overhead (%)

1. Matrix Multiplication 0.84 (s) 0.89 (s) 5.95 %

2. Dhrystone2.1 19.44 (s) 52.00 (s) 167.49 %

3. ISR Sample 0.70 (s) 0.73 (s) 4.29 %

4. RISC-V Arch 1.11 (s) 1.47 (s) 32.43 %

5. RISC-V Compliance Test 0.90 (s) 0.96 (s) 6.67 %

6. RISC-V ISA Test 0.77 (s) 0.78 (s) 1.30 %

1.30 ~ 167.49 %
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Benefit of Dynamic PQ management

Table 5-2. Processing Time benefits of using the dynamic PQ 

technique versus the basic post-processing technique.

Program Name
Program 

type
Program Description

Processing Time

(Basic)

(ms)

Processing 

Time

(Dynamic PQ)

(ms)

Speedup

Matrix 

Multiplication

Functional

Compute matrix multiplication 

program
2.88 0.10 28.56 X

Dhrystone2.1 Core benchmark program 308.82 1.17 264.39 X

ISR Sample Test Interrupt Service Routine 0.21 0. 13 1.57 X

RISC-V Arch

Structural

Fundamental  architecture 

check, do not check all the 

combination of instruction sets.

2.50 0.14 17.74 X

RISC-V 

Compliance 

Verify RISC-V processor 

compatibility, functionality, and 

adherence to minimal 

instruction usage.

2.19 0.12 18.09 X

RISC-V ISA 
Confirm that all RV32I 

instructions are operational.
0.11 0.10 1.11 X
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Trojan Experiment

Table 5-3. Experimental results on detecting various Trojans 

implanted into the RISC-V core under auditing.

Trojan Name Trojan Effect Activation Mechanism
Affected Care Outputs 

(ACO) Detection Rate

MC8051-T800

Denial of Signal 

Transmission

Externally direct user 

input
100

PIC16F84‐T700

Internally 

conditionally triggered

100

PIC16F84‐T100 100

PIC16F84‐T200 100

PIC16F84‐T400 100

MC8051-T600

Change of 

Functionality

Externally direct user 

input
100

MC8051-T400
Internally 

conditionally triggered

100

MC8051-T500 100

B19-T300

Internally time-based 

triggered

100

B19-T400 100

B19-T500 100

PIC16F84‐T300
Leakage of 

Information

Internally 

conditionally triggered
100
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PIC16F84-T100

Fig. 5-2. The simulation waveforms of our framework for a RISC-V core implanted with a 

PIC16F84-T100 Trojan in [16]. The other reference core is Trojan-free.
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Conclusion

◼Cross-auditing framework is very user-friendly as it does not need to specify the 

Trojan models explicitly.

◼It is non-invasive as it does not require the source codes of the core under auditing.

◼Low processing-time overhead complexity of only O(log2 n) for each care-output 

packet produced during the cross-auditing process, with n denoting the unmatched 

packets between the two cores.

◼9 Trojan types reported in a well-recognized “Trust-hub” platform show its nearly 

100% coverage.
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The End
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