
Better Late Than Never
Collecting Coverage from Zeroes and Ones

Rich Edelman, Siemens EDA, Fremont, CA US

Tsung-Yu Tsai, Siemens Taiwan, HsinChu City, Taiwan

Optional company logo(s) only at title page

Background

• Files of zeroes and ones
• ASCII – expected and actual

• VCD

• qwave.db

• WLF

• other

• Coverage
• Toggle

• Block

• FSM

• Conditional

• Functional

2024/9/10 2

qwave.db

VCD

Concept – Imagination

• Coverage wasn’t modeled
• Management decision - No time in the schedule – maybe it is an FPGA

• But we’d like to know about some of the coverage

• Build a Verilog instance tree that has names like the real design
• This makes the coverage report easy to read

• At each instance, populate it with the “sampled value datatypes” (reg[3:0]valueB)

• Build a functional coverage model for the variables.
• coverpoint, bins, crosses

• Now, assign those zeroes and ones to the variables in turn. Collecting
coverage

2024/9/10 3

Conceptual Flow

2024/9/10 4

10 010101010110

20 101011101011

30 101010111111

40 000001110001

Simulation of
coverage
models

The File Reader

• A “global” variable to hold
the line of bits

• Get the filename

• Open the file using $fopen

2024/9/10 5

module top();

 // A "global" variable to hold the line

 // JUST read. The DUT-coverage-model uses

 // this to assign the parts.

 bit [1023:0] vector;

 initial begin

 bit [1023:0] my_values;

 string filename;

 longint my_time, now;

 int d;

 integer fd, code;

 now = 0;

 if (!$value$plusargs("i=%s", filename))

 filename = "testfile.txt";

 $display("...processing '%s'", filename);

 // Open the "values" file

 fd = $fopen(filename, "r");

The File Reader

• Read the whole file

• Use $fscanf
• Read the time

• Read the bit vector

• Update the current
time

• Apply the bits to the
“global” holding bit
vector

2024/9/10 6

// Loop through each line, one at a time.

 // 1. Update the time

 // 2. Apply the values

 // 3. Repeat for each line

 forever begin

 // Read a line

 code = $fscanf(fd, "%d %b", my_time, my_values);

 if (code == -1) begin

 $finish(2);

 end

 // Update time

 d = my_time - now;

 #d;

 now = now + d;

 // Apply the values to the global

 vector = my_values;

 end

 end

endmodule

Assigning the bits

2024/9/10 7

module M();

 ABC abc0();

 ABC abc1();

 // When the intermediate vector changes, assign

 // its contents to the underlying values – deep

 // in the hierarchy or on the top

 always @(top.vector) begin

 $display("@%t: Vector=%20b", $time, top.vector);

 {

 abc0.a.valueA, abc0.b.valueB, abc0.c.valueC,

 abc1.a.valueA, abc1.b.valueB, abc1.c.valueC

 } = top.vector;

 end

endmodule

abc0.a.valueA[4:0],

abc0.b.valueB[4:0],

abc0.c.valueC[2:0]

abc1.a.valueA[4:0],

abc1.b.valueB[4:0],

abc1.c.valueC[2:0]

A Simple Functional Coverage Model

• Construct a coverage object ‘cgi’.

• Write a coverage model. Simple in this
case.

• Inside the module A(), a value ‘valueA’.

• valueA got assigned by the
concatenation above.

• Once valueA changes, trigger a call to
sample().

2024/9/10 8

module A();

 reg [4:0] valueA;

 covergroup cg;

 cp_valueA: coverpoint valueA;

 endgroup

 cg cgi = new();

 always @(valueA) begin

 $display("@%t: %m.valueA=%20b",

 $time, valueA);

 cgi.sample();

 end

endmodule

Structs too

• Exactly the same concepts.

• Assign, trigger, call sample()

2024/9/10 9

module B();

 typedef struct packed {

 reg [1:0] status;

 reg intr;

 reg [1:0] count;

 } csr_reg_t;

 csr_reg_t valueB;

 covergroup cg;

 status: coverpoint valueB.status;

 intr: coverpoint valueB.intr;

 count: coverpoint valueB.count;

 endgroup

 cg cgi = new();

 always @(valueB) begin

 cgi.sample();

 end

endmodule

module B();

 reg [4:0] valueB;

 covergroup cg;

 cp_valueB: coverpoint valueB;

 endgroup

 cg cgi = new();

 always @(valueB) begin

 cgi.sample();

 end

endmodule

Build a covergroup appropriate for the data
type – bit vector or struct – for example

Coverage

• Bit Vector model

• Struct model

2024/9/10 10

Bit Vector

Struct

Interesting beyond functional coverage

• This is our “regular” model

• A value is going to be assigned
as read from the file

• A covergroup was designed

• cgi.sample() is triggered

• What other coverage can be
collected?

2024/9/10 11

module C();

 reg [2:0] valueC;

 covergroup cg;

 cp_valueC: coverpoint valueC;

 endgroup

 cg cgi = new();

 always @(valueC) begin

 cgi.sample();

 end

endmodule

What about other kinds of coverage?

• Write a “fake” FSM in the
‘module C’

• It gets recognized by the
compiler / optimizer

• But it never operates – the states
are assigned

• Notice the ‘fake_clk”
• it doesn’t run

2024/9/10 12

module C();

 reg [2:0] valueC;

 reg clk, fake_clk;

 always @(posedge fake_clk) begin

 case(valueC)

 ZERO: valueC <= ONE;

 ONE: valueC <= TWO;

 TWO: valueC <= THREE;

 THREE: valueC <= FOUR;

 FOUR: valueC <= FIVE;

 FIVE: valueC <= SIX;

 SIX: valueC <= SEVEN;

 SEVEN: valueC <= ZERO;

 endcase

 end

endmodule

Interesting beyond functional coverage 1

• Since the state machine doesn’t “run”
• Block / Statement coverage doesn’t register

2024/9/10 13

Interesting beyond functional coverage 2

• ‘valueC’ is being
assigned

• the state and transition
coverage is collected

2024/9/10 14

module C();

 reg [2:0] valueC;

 reg clk, fake_clk;

 always @(posedge fake_clk) begin

 case(valueC)

 ZERO: valueC <= ONE;

 ONE: valueC <= TWO;

 TWO: valueC <= THREE;

 THREE: valueC <= FOUR;

 FOUR: valueC <= FIVE;

 FIVE: valueC <= SIX;

 SIX: valueC <= SEVEN;

 SEVEN: valueC <= ZERO;

 endcase

 end

endmodule

Interesting beyond functional coverage 3

• An always block that operates expressions but does NOT
change the “values” that are assigned from the file

2024/9/10 15

module C();

 reg [2:0] valueC;

 reg clk;

 int count;

 always begin

 #1; clk = 0;

 #1; clk = 1;

 end

always @(posedge clk) begin

 if (valueC == ONE) begin

 count++;

 end

 else if (valueC == TWO) begin

 count--;

 end

 else

 count = 13;

 end

endmoduleThe expressions and branches and lines can be covered –
they are conditioned with ‘valueC’ from the file assigns

Coverage Roll-up

• Not all the coverage categories are “valid”

• It “depends”
• Covergroups/Toggle/FSM – all good

• Block/Branch – depends on the module/instance

2024/9/10 16

Conclusion

• Coverage is a useful tool for measuring “completeness”

• Even after the fact, a file of zeroes and ones can be used to
collect coverage

• Have all the legal values been used

• Have all the legal “crosses” between two variables been used

• Building a small structure helps with naming conventions and
reporting

• Keep the system simple

• Explore more kinds of coverage that might apply to this scheme

2024/9/10 17

Questions

• Source code available – contact rich.edelman@siemens.com

2024/9/10 18

mailto:rich.edelman@siemens.com

	Slide 1: Better Late Than Never Collecting Coverage from Zeroes and Ones
	Slide 2: Background
	Slide 3: Concept – Imagination
	Slide 4: Conceptual Flow
	Slide 5: The File Reader
	Slide 6: The File Reader
	Slide 7: Assigning the bits
	Slide 8: A Simple Functional Coverage Model
	Slide 9: Structs too
	Slide 10: Coverage
	Slide 11: Interesting beyond functional coverage
	Slide 12: What about other kinds of coverage?
	Slide 13: Interesting beyond functional coverage 1
	Slide 14: Interesting beyond functional coverage 2
	Slide 15: Interesting beyond functional coverage 3
	Slide 16: Coverage Roll-up
	Slide 17: Conclusion
	Slide 18: Questions

